Energetic Neutral Atoms from Solar Flares H. S. Hudson 1, R. P. Lin 1, A. L. MacKinnon 2, J. C. Raymond 3, A. Y. Shih 1, and Wang, L. 1 1 University of.

Slides:



Advertisements
Similar presentations
Thermal and nonthermal contributions to the solar flare X-ray flux B. Dennis & K. PhillipsNASA/GSFC, USA J. & B. SylwesterSRC, Poland R. Schwartz & K.
Advertisements

RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
Heavy Ion Abundances in Large Solar Energetic Particle Events Spring AGU 2006, SH43B-04 Heavy Ion Abundances in Large Solar Energetic Particle Events Spring.
NBYM 2006 A major proton event of 2005 January 20: propagating supershock or superflare? V. Grechnev 1, V. Kurt 2, A. Uralov 1, H.Nakajima 3, A. Altyntsev.
Investigating the Origin of the Long-Duration High- Energy Gamma-Ray Flares Gerry Share, Jim Ryan and Ron Murphy (in absentia) Steering Committee Overseer.
The Johns Hopkins University Applied Physics Laboratory SHINE 2005, July 11-15, 2005 Transient Shocks and Associated Energetic Particle Events Observed.
Energy Release and Particle Acceleration in Solar Flares Nicole Vilmer LESIA-Observatoire de Paris VII COLAGE-Atibaia 01/04/04.
R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley The Solar System: A Laboratory for the Study of the Physics of Particle.
Solar flares and accelerated particles
X-ray Emission due to Charge Exchange between Solar Wind and Earth Atmosphere on September Hironori Matsumoto (Kobayashi-Maskawa Institute, Nagoya.
PRECIPITATION OF HIGH-ENERGY PROTONS AND HYDROGEN ATOMS INTO THE UPPER ATMOSPHERES OF MARS AND VENUS Valery I. Shematovich Institute of Astronomy, Russian.
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
Solar and Stellar Flares Hugh S. Hudson SSL, UC Berkeley 1 May
Flare Dynamics in the Lower Solar Atmosphere H. S. Hudson Space Sciences Laboratory, University of California, Berkeley, USA Astronomy & Astrophysics Group,
EVE non-detection of Doppler-shifted He II 304 Å H.S. Hudson 1,2, L. Fletcher 2, A. MacKinnon 2, and T. Woods 3 1 SSL, UC Berkeley, 2 University of Glasgow,
The mystery of the MISSING MOMENTUM H. S. Hudson Space Sciences Laboratory, University of California, Berkeley, USA Astronomy & Astrophysics Group, Glasgow.
EVE and RHESSI H. S. Hudson Space Sciences Laboratory, University of California, Berkeley, USA RHESSI, April 5, 2011.
Working Group 2 - Ion acceleration and interactions.
Coronal radiation belts? H. S. Hudson Space Sciences Lab, UC Berkeley.
Probing Ion Acceleration by Observing Gamma Rays from Solar Flares Albert Y. Shih 1 NASA Advisor: Brian R. Dennis 2 Faculty Advisor: Robert P. Lin 1 1.
Energetic neutral atoms from solar flares H. S. Hudson SSL, UC Berkeley.
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), J. Wolfson (LMSAL) & T. Metcalf (CORA)
Energetic Particles in the Quiet Corona A. MacKinnon 1,2, M. DeRosa 3, S. Frewen 2, & H. Hudson 2 1 University of Glasgow, 2 Space Sciences Laboratory,
FLARE ENERGETICS:TRACE WHITE LIGHT AND RHESSI HARD X-RAYS* L. Fletcher (U. Glasgow), J. C. Allred (GSFC), I. G. Hannah (UCB), H. S. Hudson (UCB), T. R.
Transients in RHESSI and Chromospheric flares H. Hudson Space Sciences Lab, UC Berkeley.
PTA, September 21, 2005 Solar flares in the new millennium H.S. Hudson Space Sciences Lab, UC Berkeley.
Uses of solar hard X-rays Basics of observations Hard X-rays at flare onset The event of April 18, 2001 Conclusions Yohkoh 10th Jan. 21, 2002Hugh Hudson,
Coronal radiation belts? H. S. Hudson Space Sciences Lab, UC Berkeley Elliot (1973) cartoon, from
Temporal Variability of Gamma- Ray Lines from the X-Class Solar Flare of 2002 July 23 Albert Y. Shih 1,2, D. M. Smith 1, R. P. Lin 1,2, S. Krucker 1, R.
Energetic Neutral Atoms from Solar Flares H. S. Hudson 1, S. Frewen 1, R. P. Lin 1, A. L. MacKinnon 2, J. C. Raymond 3, and A. Y. Shih 1 1 University of.
Hard X-ray Diagnostics of Solar Eruptions H. Hudson SSL, UC Berkeley and U. Of Glasgow.
Coronal hard X-rays, CMEless X-class flares, and fast atoms H. S. Hudson Space Sciences Laboratory University of California, Berkeley.
Axions from the Sun? H. S. Hudson SSL, UC Berkeley
SSL UC Berkeley 2010 June ACE/SOHO/STEREO/Wind Workshop When and Where are Impulsive SEPs Accelerated? Linghua Wang, Bob Lin, S ä m Krucker Space Sciences.
Large-scale Nonthermal Coronal Phenomena H. S. Hudson Space Sciences Laboratory University of California, Berkeley.
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
The nature of impulsive solar energetic particle events N. V. Nitta a, H. S. Hudson b, M. L. Derosa a a Lockheed Martin Solar and Astrophysics Laboratory.
CORONAS/SONG and INTEGRAL/SPI observations of the 2003 Oct 28 solar flare with M. Gros, J. Kiener, V. Kurt & B. Yushkov.
Large-scale Nonthermal Coronal Phenomena H. S. Hudson Space Sciences Laboratory University of California, Berkeley.
Solar X-ray Searches for Axions H. S. Hudson SSL, UC Berkeley
Coronal radiation belts H. S. Hudson 1, M. DeRosa 2, & A. MacKinnon 3 1 Space Sciences Lab, UC Berkeley; 2 LMSAL; 3 University of Glasgow Abstract: We.
White-Light Flares via TRACE and RHESSI: Death to the thick target? H. Hudson, plus collaboration with J. Allred, I. Hannah, L. Fletcher, T. Metcalf, J.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
High-Cadence EUV Imaging, Radio, and In-Situ Observations of Coronal Shocks and Energetic Particles: Implications for Particle Acceleration K. A. Kozarev.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
RHESSI Microflares Steven Christe 1,2, Säm Krucker 2, Iain Hannah 3, R. P. Lin 1,2 1 Physics Department, University of California at Berkeley 2 Space Sciences.
Compelling Theoretical Issues Driven by Observations / Theoretical Wish List of Observations WG5 Hamish Reid.
Solar Energetic Particle Events: An Overview Christina Cohen Caltech.
Outstanding Issues Gordon Holman & The SPD Summer School Faculty and Students.
Elemental Abundance variations of the Suprathermal Heavy Ion Population over solar cycle 23 M. Al Dayeh, J.R. Dwyer, H.K. Rassoul Florida Institute of.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
1 20 January 2005: Session Summary SHINE 2006 Zermatt, Utah, 31 July - 4 August Invited Talks Riley: what was the Alfven speed in the corona at.
1 SEP “Campaign Events” for SHINE 2003 Question: Can we identify solar/interplanetary factors that drive SEP spectral and compositional variability at.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
1 SEP Timing Studies: An Excruciatingly Brief Review Allan J. Tylka US Naval Research Laboratory, Washington DC SHINE 2006 Where was the CME when the SEPs.
CME/Flare energetics and RHESSI observations H.S. Hudson SSL/UCB.
Hybrid model of solar energetic particle acceleration and transport Hybrid model of solar energetic particle acceleration and transport Leon Kocharov,
Physics of Solar Flares
Elemental Abundance variations of the Suprathermal Heavy Ion Population over solar cycle 23 M. Al Dayeh, J.R. Dwyer, H.K. Rassoul Florida Institute of.
N. Giglietto (INFN Bari) and
A Relation between Solar Flare Manifestations and the GLE Onset
Progress Toward Measurements of Suprathermal Proton Seed Particle Populations J. Raymond, J. Kohl, A. Panasyuk, L. Gardner, and S. Cranmer Harvard-Smithsonian.
3D Modelling of Heavy Ion SEP Propagation
Particle Acceleration at Coronal Shocks: the Effect of Large-scale Streamer-like Magnetic Field Structures Fan Guo (Los Alamos National Lab), Xiangliang.
Solar Flare Energy Partition into Energetic Particle Acceleration
Organizers: Mihir Desai, Joe Giacalone, Eric Christian
Study of 20 January 2005 solar flare area by certain gamma-ray lines
SMALL SEP EVENTS WITH METRIC TYPE II RADIO BURSTS
Heavy-Ion Acceleration and Self-Generated Waves in Coronal Shocks
Presentation transcript:

Energetic Neutral Atoms from Solar Flares H. S. Hudson 1, R. P. Lin 1, A. L. MacKinnon 2, J. C. Raymond 3, A. Y. Shih 1, and Wang, L. 1 1 University of California, Berkeley; 2 University of Glasgow (UK), 3 Institute for Astronomy, Cambridge (US)

SPD 2009 Overview Mewaldt et al. (2009)* have observed ENAs from a flare for the first time. This was unexpected but highly significant - it reveals a virtually unknown parameter space (flare-associated protons below a few MeV). The flare ENAs could come from the CME shock acceleration, or from the flare  -ray sources. We are studying the ENA sources by Monte Carlo techniques. *ApJ 693, L11 (2009)

SPD 2009 Mewaldt et al. Figures The STEREO observations provide both spatial and temporal signatures that clearly identify the particles as hydrogen The injection times closely match the GOES light curve of the flare

SPD 2009 How many particles? Mewaldt et al. estimate a total of 1.8 x ENA particles (hydrogen atoms) assuming isotropic emission in a hemisphere RHESSI  -ray observations imply a total of 1.3 x protons above 30 MeV Assuming a spectral index of 3.5, this implies a total of 2 x protons above 1.6 MeV The escape efficiency of 2 MeV ENAs may be of order 10 -6

SPD 2009 Whence flare ENAs? Neutralization and re-ionization on open field lines: Mikic & Lee, 2006 Neutralization and re-ionization on closed field lines: Dennis & Schwartz,

SPD 2009 Monte Carlo simulations Neutral hydrogen and protons are alternative states of the same particle. Can successive ionizations and neutralizations allow flare ENAs to originate from the flare  -ray sources in the deep corona? If so, do the emergent ENAs retain any information about the spectrum, source structure, or time profile? Everything is very complicated, so we are trying to extract answers via Monte Carlo simulations embodying enough of the physics

SPD 2009 Proton injected at 1.2 R 2 MeV (example)

SPD 2009 What do we want to learn from the Monte Carlo model? The escape efficiency as a function of injection height and other parameters The spectrum of the escaping ENAs, ditto The angular distribution of the emerging ENAs The spatial structure of the apparent ENA source

SPD 2009 Conclusions The Mewaldt et al. (2009) result is one of the most important for flare high-energy physics in this century, since it opens a vast new parameter space Interpretation is wide open at present. Our Monte Carlo model suggests that ENA escape from the flare  -ray sources may be feasible, but it is preliminary work If the ENAs come from CME shock acceleration, we will need to revise our views of where this is happening

SPD 2009 Backup slides

SPD 2009 Mewaldt et al. Figures (II) The HET counts resemble those expected from neutron decay The LET spectrum appears to steepen > 5 MeV

SPD 2009 Some necessary physics Charge exchange vs collisions Charge exchange cross-sections (H-like and He-like only) Fe? Impact ionization  i = 2.3 x E p cm 2 (Barghouty, 2000) Fe?

SPD 2009 Notes on Monte Carlo model The calculation includes ion flight with RK4 tracing of the guiding center in a Schrijver-DeRosa PFSS model of the coronal field (Hudson et al., 2009) Ion dE/dx from Weaver & Westphal (2003); ion stripping from Barghouty (2000); charge-exchange on K-shell minor ions from Kuang (1992); ionization equilibrium from Mazzotta The plots show successive ion and neutral flights (red) for a few particles with different fates

SPD Energy decay 3. Time out 2. Footpoint ENA flight 4. Solar wind ENA flight Protons injected at 1.2 2MeV (examples)