1  1998 Morgan Kaufmann Publishers and UCB CEG3420 Computer Design Lecture 4 MIPS Instruction Set Philip Leong.

Slides:



Advertisements
Similar presentations
Henk Corporaal TUEindhoven 2011
Advertisements

Review of the MIPS Instruction Set Architecture. RISC Instruction Set Basics All operations on data apply to data in registers and typically change the.
1 ECE462/562 ISA and Datapath Review Ali Akoglu. 2 Instruction Set Architecture A very important abstraction –interface between hardware and low-level.
©UCB CS 161 Lecture 4 Prof. L.N. Bhuyan
1 ECE369 ECE369 Chapter 2. 2 ECE369 Instruction Set Architecture A very important abstraction –interface between hardware and low-level software –standardizes.
ECE 232 L6.Assemb.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 6 MIPS Assembly.
CMPE 325 Computer Architecture II Cem Ergün Eastern Mediterranean University Assembly Language (cont)
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 5 MIPS ISA & Assembly Language Programming.
Systems Architecture Lecture 5: MIPS Instruction Set
1 INSTRUCTIONS: LANGUAGE OF THE MACHINE CHAPTER 3.
Chapter 2 Instructions: Language of the Computer
Chapter 2.
1 Chapter 3: Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g.,
1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic.
EECC550 - Shaaban #1 Lec # 2 Winter Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions.
Reduced Instruction Set Computer (RISC)
1 Chapter Introduction Language of the Machine We’ll be working with the MIPS instruction set architecture –similar to other architectures developed.
ENEE350 Spring07 1 Ankur Srivastava University of Maryland, College Park Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005.”
1 CSE SUNY New Paltz Chapter 3 Machine Language Instructions.
S. Barua – CPSC 440 CHAPTER 2 INSTRUCTIONS: LANGUAGE OF THE COMPUTER Goals – To get familiar with.
Lecture 5 Sept 14 Goals: Chapter 2 continued MIPS assembly language instruction formats translating c into MIPS - examples.
1  1998 Morgan Kaufmann Publishers Chapter 3 Text in blue is by N. Guydosh Updated 1/27/04 Instructions: Language of the Machine.
Text-book Slides Chapters 1-2 Prepared by the publisher (We have not necessarily followed the same order)
1  2004 Morgan Kaufmann Publishers Chapter 2. 2  2004 Morgan Kaufmann Publishers Instructions: Language of the Machine We’ll be working with the MIPS.
EECC550 - Shaaban #1 Lec # 2 Winter Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions.
©UCB CPSC 161 Lecture 5 Prof. L.N. Bhuyan
Computer Organization and Architecture (AT70.01) Comp. Sc. and Inf. Mgmt. Asian Institute of Technology Instructor: Dr. Sumanta Guha Slide Sources: Patterson.
Computing Systems Instructions: language of the computer.
1  2004 Morgan Kaufmann Publishers Instructions: bne $t4,$t5,Label Next instruction is at Label if $t4≠$t5 beq $t4,$t5,Label Next instruction is at Label.
순천향대학교 정보기술공학부 이 상 정 1 2. Instructions: Language of the Computer.
IT253: Computer Organization Lecture 5: Assembly Language and an Introduction to MIPS Tonga Institute of Higher Education.
1 EGRE 426 Fall 09 Handout Pipeline examples continued from last class.
CPE 442 Lec4.1 Intro Computer Architectures CpE 442 Computer Architecture and Engineering MIPS Instruction Set Architecture.
1 CS/EE 362 Hardware Fundamentals Lecture 10 (Chapter 3: Hennessy and Patterson) Winter Quarter 1998 Chris Myers.
EECC250 - Shaaban #1 lec #21 Winter Complex Instruction Set Computer (CISC) Emphasizes doing more with each instruction. Motivated by the high.
1  1998 Morgan Kaufmann Publishers Machine Instructions: Language of the Machine Lowest level of programming, control directly the hardware Assembly instructions.
6.S078 - Computer Architecture: A Constructive Approach Introduction to SMIPS Li-Shiuan Peh Computer Science & Artificial Intelligence Lab. Massachusetts.
April 23, 2001Systems Architecture I1 Systems Architecture I (CS ) Lecture 9: Assemblers, Linkers, and Loaders * Jeremy R. Johnson Mon. April 23,
Computer Architecture (CS 207 D) Instruction Set Architecture ISA.
Small constants are used quite frequently (50% of operands) e.g., A = A + 5; B = B + 1; C = C - 18; Solutions? Why not? put 'typical constants' in memory.
 1998 Morgan Kaufmann Publishers MIPS arithmetic All instructions have 3 operands Operand order is fixed (destination first) Example: C code: A = B +
RISC Processor Design RISC Instruction Set Virendra Singh Indian Institute of Science Bangalore Lecture 8 SE-273: Processor Design.
Chapter 2 CSF 2009 The MIPS Assembly Language. Stored Program Computers Instructions represented in binary, just like data Instructions and data stored.
Computer Organization and Design Jair Gonzalez Enero 2004 MIPS ISA.
Computer Organization CS224 Fall 2012 Lessons 7 and 8.
Computer Organization Rabie A. Ramadan Lecture 3.
EE472 – Spring 2007P. Chiang, with Slide Help from C. Kozyrakis (Stanford) ECE472 Computer Architecture Lecture #3—Oct. 2, 2007 Patrick Chiang TA: Kang-Min.
MIPS Instructions Instructions: Language of the Machine
Chapter 2 — Instructions: Language of the Computer — 1 Conditional Operations Branch to a labeled instruction if a condition is true – Otherwise, continue.
DR. SIMING LIU SPRING 2016 COMPUTER SCIENCE AND ENGINEERING UNIVERSITY OF NEVADA, RENO Session 7, 8 Instruction Set Architecture.
Lecture 2: Instruction Set Architecture part 1 (Introduction) Mehran Rezaei.
Instruction Set Architecture Chapter 3 – P & H. Introduction Instruction set architecture interface between programmer and CPU Good ISA makes program.
1  1998 Morgan Kaufmann Publishers Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow.
Today’s Agenda MIPS ISA Microcomputer without Interlocked Pipeline Stages !
1 ECE3055 Computer Architecture and Operating Systems Lecture 3 MIPS ISA Prof. Hsien-Hsin Sean Lee School of Electrical and Computer Engineering Georgia.
Instructor: Prof. Hany H Ammar, LCSEE, WVU
ECE3055 Computer Architecture and Operating Systems Chapter 2: Procedure Calls & System Software These lecture notes are adapted from those of Professor.
RISC Concepts, MIPS ISA Logic Design Tutorial 8.
Computer Architecture (CS 207 D) Instruction Set Architecture ISA
Instructions - Type and Format
Systems Architecture Lecture 5: MIPS Instruction Set
Henk Corporaal TUEindhoven 2010
ECE232: Hardware Organization and Design
Computer Instructions
Computer Architecture
September 17 Test 1 pre(re)view Fang-Yi will demonstrate Spim
UCSD ECE 111 Prof. Farinaz Koushanfar Fall 2018
COMS 361 Computer Organization
COMS 361 Computer Organization
Machine Instructions.
Presentation transcript:

1  1998 Morgan Kaufmann Publishers and UCB CEG3420 Computer Design Lecture 4 MIPS Instruction Set Philip Leong

2  1998 Morgan Kaufmann Publishers and UCB Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We’ll be working with the MIPS instruction set architecture –similar to other architectures developed since the 1980's –used by NEC, Nintendo, Silicon Graphics, Sony Design goals: maximize performance and minimize cost, reduce design time

3  1998 Morgan Kaufmann Publishers and UCB MIPS arithmetic All instructions have 3 operands Operand order is fixed (destination first) Example: C code: A = B + C MIPS code: add $s0, $s1, $s2 (associated with variables by compiler)

4  1998 Morgan Kaufmann Publishers and UCB MIPS arithmetic Design Principle: simplicity favors regularity. Why? Of course this complicates some things... C code: A = B + C + D; E = F - A; MIPS code: add $t0, $s1, $s2 add $s0, $t0, $s3 sub $s4, $s5, $s0 Operands must be registers, only 32 registers provided Design Principle: smaller is faster. Why?

5  1998 Morgan Kaufmann Publishers and UCB Registers vs. Memory ProcessorI/O Control Datapath Memory Input Output Arithmetic instructions operands must be registers, — only 32 registers provided Compiler associates variables with registers What about programs with lots of variables

6  1998 Morgan Kaufmann Publishers and UCB Memory Organization Viewed as a large, single-dimension array, with an address. A memory address is an index into the array "Byte addressing" means that the index points to a byte of memory bits of data

7  1998 Morgan Kaufmann Publishers and UCB Memory Organization Bytes are nice, but most data items use larger "words" For MIPS, a word is 32 bits or 4 bytes bytes with byte addresses from 0 to words with byte addresses 0, 4, 8, Words are aligned i.e., what are the least 2 significant bits of a word address? bits of data Registers hold 32 bits of data

8  1998 Morgan Kaufmann Publishers and UCB Instructions Load and store instructions Example: C code: A[8] = h + A[8]; MIPS code: lw $t0, 32($s3) add $t0, $s2, $t0 sw $t0, 32($s3) Store word has destination last Remember arithmetic operands are registers, not memory!

9  1998 Morgan Kaufmann Publishers and UCB Our First Example Can we figure out the code? swap(int v[], int k); { int temp; temp = v[k] v[k] = v[k+1]; v[k+1] = temp; } swap: muli $2, $5, 4 add $2, $4, $2 lw $15, 0($2) lw $16, 4($2) sw $16, 0($2) sw $15, 4($2) jr $31

10  1998 Morgan Kaufmann Publishers and UCB So far we’ve learned: MIPS — loading words but addressing bytes — arithmetic on registers only InstructionMeaning add $s1, $s2, $s3$s1 = $s2 + $s3 sub $s1, $s2, $s3$s1 = $s2 – $s3 lw $s1, 100($s2)$s1 = Memory[$s2+100] sw $s1, 100($s2)Memory[$s2+100] = $s1

11  1998 Morgan Kaufmann Publishers and UCB Instructions, like registers and words of data, are also 32 bits long –Example: add $t0, $s1, $s2 –registers have numbers, $t0=9, $s1=17, $s2=18 Instruction Format: op rs rt rdshamtfunct Can you guess what the field names stand for? Machine Language

12  1998 Morgan Kaufmann Publishers and UCB Consider the load-word and store-word instructions, –What would the regularity principle have us do? –New principle: Good design demands a compromise Introduce a new type of instruction format –I-type for data transfer instructions –other format was R-type for register Example: lw $t0, 32($s2) op rs rt 16 bit number Where's the compromise? Machine Language

13  1998 Morgan Kaufmann Publishers and UCB Instructions are bits Programs are stored in memory — to be read or written just like data Fetch & Execute Cycle –Instructions are fetched and put into a special register –Bits in the register "control" the subsequent actions –Fetch the “next” instruction and continue ProcessorMemory memory for data, programs, compilers, editors, etc. Stored Program Concept

14  1998 Morgan Kaufmann Publishers and UCB Decision making instructions –alter the control flow, –i.e., change the "next" instruction to be executed MIPS conditional branch instructions: bne $t0, $t1, Label beq $t0, $t1, Label Example: if (i==j) h = i + j; bne $s0, $s1, Label add $s3, $s0, $s1 Label:.... Control

15  1998 Morgan Kaufmann Publishers and UCB MIPS unconditional branch instructions: j label Example: if (i!=j) beq $s4, $s5, Lab1 h=i+j;add $s3, $s4, $s5 else j Lab2 h=i-j;Lab1:sub $s3, $s4, $s5 Lab2:... Can you build a simple for loop? Control

16  1998 Morgan Kaufmann Publishers and UCB So far: InstructionMeaning add $s1,$s2,$s3$s1 = $s2 + $s3 sub $s1,$s2,$s3$s1 = $s2 – $s3 lw $s1,100($s2)$s1 = Memory[$s2+100] sw $s1,100($s2)Memory[$s2+100] = $s1 bne $s4,$s5,LNext instr. is at Label if $s4 ° $s5 beq $s4,$s5,LNext instr. is at Label if $s4 = $s5 j LabelNext instr. is at Label Formats: op rs rt rdshamtfunct op rs rt 16 bit address op 26 bit address RIJRIJ

17  1998 Morgan Kaufmann Publishers and UCB We have: beq, bne, what about Branch-if-less-than? New instruction: if $s1 < $s2 then $t0 = 1 slt $t0, $s1, $s2 else $t0 = 0 Can use this instruction to build " blt $s1, $s2, Label " — can now build general control structures Note that the assembler needs a register to do this, — there are policy of use conventions for registers 2 Control Flow

18  1998 Morgan Kaufmann Publishers and UCB Policy of Use Conventions

19  1998 Morgan Kaufmann Publishers and UCB Small constants are used quite frequently (50% of operands) e.g., A = A + 5; B = B + 1; C = C - 18; Solutions? Why not? –put 'typical constants' in memory and load them. –create hard-wired registers (like $zero) for constants like one. MIPS Instructions: addi $29, $29, 4 slti $8, $18, 10 andi $29, $29, 6 ori $29, $29, 4 How do we make this work? 3 Constants

20  1998 Morgan Kaufmann Publishers and UCB We'd like to be able to load a 32 bit constant into a register Must use two instructions, new "load upper immediate" instruction lui $t0, Then must get the lower order bits right, i.e., ori $t0, $t0, ori filled with zeros How about larger constants?

21  1998 Morgan Kaufmann Publishers and UCB Assembly provides convenient symbolic representation –much easier than writing down numbers –e.g., destination first Machine language is the underlying reality –e.g., destination is no longer first Assembly can provide 'pseudoinstructions' –e.g., “move $t0, $t1” exists only in Assembly –would be implemented using “add $t0,$t1,$zero” When considering performance you should count real instructions Assembly Language vs. Machine Language

22  1998 Morgan Kaufmann Publishers and UCB simple instructions all 32 bits wide very structured, no unnecessary baggage only three instruction formats rely on compiler to achieve performance — what are the compiler's goals? help compiler where we can op rs rt rdshamtfunct op rs rt 16 bit address op 26 bit address RIJRIJ Overview of MIPS

23  1998 Morgan Kaufmann Publishers and UCB Instructions: bne $t4,$t5,Label Next instruction is at Label if $t4 ° $t5 beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5 j Label Next instruction is at Label Formats: Addresses are not 32 bits — How do we handle this with load and store instructions? op rs rt 16 bit address op 26 bit address IJIJ Addresses in Branches and Jumps

24  1998 Morgan Kaufmann Publishers and UCB Instructions: bne $t4,$t5,Label Next instruction is at Label if $t4°$t5 beq $t4,$t5,Label Next instruction is at Label if $t4=$t5 Formats: Could specify a register (like lw and sw) and add it to address –use Instruction Address Register (PC = program counter) –most branches are local (principle of locality) Jump instructions just use high order bits of PC –address boundaries of 256 MB op rs rt 16 bit address I Addresses in Branches

25  1998 Morgan Kaufmann Publishers and UCB MIPS arithmetic instructions InstructionExampleMeaningComments add add $1,$2,$3$1 = $2 + $33 operands; exception possible subtractsub $1,$2,$3$1 = $2 – $33 operands; exception possible add immediateaddi $1,$2,100$1 = $ constant; exception possible add unsignedaddu $1,$2,$3$1 = $2 + $33 operands; no exceptions subtract unsignedsubu $1,$2,$3$1 = $2 – $33 operands; no exceptions add imm. unsign.addiu $1,$2,100$1 = $ constant; no exceptions multiply mult $2,$3Hi, Lo = $2 x $364-bit signed product multiply unsignedmultu$2,$3Hi, Lo = $2 x $364-bit unsigned product divide div $2,$3Lo = $2 ÷ $3,Lo = quotient, Hi = remainder Hi = $2 mod $3 divide unsigned divu $2,$3Lo = $2 ÷ $3,Unsigned quotient & remainder Hi = $2 mod $3 Move from Himfhi $1$1 = HiUsed to get copy of Hi Move from Lomflo $1$1 = LoUsed to get copy of Lo Which add for address arithmetic? Which add for integers?

26  1998 Morgan Kaufmann Publishers and UCB MIPS logical instructions InstructionExampleMeaningComment and and $1,$2,$3$1 = $2 & $33 reg. operands; Logical AND oror $1,$2,$3$1 = $2 | $33 reg. operands; Logical OR xorxor $1,$2,$3$1 = $2  $33 reg. operands; Logical XOR nornor $1,$2,$3$1 = ~($2 |$3)3 reg. operands; Logical NOR and immediateandi $1,$2,10$1 = $2 & 10Logical AND reg, constant or immediateori $1,$2,10$1 = $2 | 10Logical OR reg, constant xor immediate xori $1, $2,10 $1 = ~$2 &~10Logical XOR reg, constant shift left logicalsll $1,$2,10$1 = $2 << 10Shift left by constant shift right logicalsrl $1,$2,10$1 = $2 >> 10Shift right by constant shift right arithm.sra $1,$2,10$1 = $2 >> 10Shift right (sign extend) shift left logicalsllv $1,$2,$3$1 = $2 << $3 Shift left by variable shift right logicalsrlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable shift right arithm.srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

27  1998 Morgan Kaufmann Publishers and UCB MIPS data transfer instructions InstructionComment SW 500(R4), R3Store word SH 502(R2), R3Store half SB 41(R3), R2Store byte LW R1, 30(R2)Load word LH R1, 40(R3)Load halfword LHU R1, 40(R3)Load halfword unsigned LB R1, 40(R3)Load byte LBU R1, 40(R3)Load byte unsigned LUI R1, 40Load Upper Immediate (16 bits shifted left by 16) Why need LUI? 0000 … 0000 LUI R5 R5

28  1998 Morgan Kaufmann Publishers and UCB MIPS Compare and Branch (Fixup) Compare and Branch –BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch –BNE rs, rt, offset <> Compare to zero and Branch –BLEZ rs, offset if R[rs] <= 0 then PC-relative branch –BGTZ rs, offset > –BLT < –BGEZ >= –BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31) –BGEZAL >= Remaining set of compare and branch take two instructions Almost all comparisons are against zero

29  1998 Morgan Kaufmann Publishers and UCB MIPS jump, branch, compare instructions InstructionExampleMeaning branch on equalbeq $1,$2,100if ($1 == $2) go to PC Equal test; PC relative branch branch on not eq.bne $1,$2,100if ($1!= $2) go to PC Not equal test; PC relative set on less thanslt $1,$2,$3if ($2 < $3) $1=1; else $1=0 Compare less than; 2’s comp. set less than imm.slti $1,$2,100if ($2 < 100) $1=1; else $1=0 Compare < constant; 2’s comp. set less than uns.sltu $1,$2,$3if ($2 < $3) $1=1; else $1=0 Compare less than; natural numbers set l. t. imm. uns.sltiu $1,$2,100if ($2 < 100) $1=1; else $1=0 Compare < constant; natural numbers jumpj 10000go to Jump to target address jump registerjr $31go to $31 For switch, procedure return jump and linkjal 10000$31 = PC + 4; go to For procedure call

30  1998 Morgan Kaufmann Publishers and UCB Signed vs. Unsigned Comparison R1= 0… R2= 0… R3= 1… After executing these instructions: slt r4,r2,r1 ; if (r2 < r1) r4=1; else r4=0 slt r5,r3,r1 ; if (r3 < r1) r5=1; else r5=0 sltu r6,r2,r1 ; if (r2 < r1) r6=1; else r6=0 sltu r7,r3,r1 ; if (r3 < r1) r7=1; else r7=0 What are values of registers r4 - r7? Why? r4 = ; r5 = ; r6 = ; r7 = ; two Value? 2’s comp Unsigned?

31  1998 Morgan Kaufmann Publishers and UCB Calls: Why Are Stacks So Great? Stacking of Subroutine Calls & Returns and Environments: A: CALL B CALL C C: RET B: A AB ABC AB A Some machines provide a memory stack as part of the architecture (e.g., VAX) Sometimes stacks are implemented via software convention (e.g., MIPS)

32  1998 Morgan Kaufmann Publishers and UCB Memory Stacks Useful for stacked environments/subroutine call & return even if operand stack not part of architecture Stacks that Grow Up vs. Stacks that Grow Down: a b c 0 Little inf. Big 0 Little inf. Big Memory Addresses SP Next Empty? Last Full? How is empty stack represented? Little --> Big/Last Full POP: Read from Mem(SP) Decrement SP PUSH: Increment SP Write to Mem(SP) grows up grows down Little --> Big/Next Empty POP: Decrement SP Read from Mem(SP) PUSH: Write to Mem(SP) Increment SP

33  1998 Morgan Kaufmann Publishers and UCB Call-Return Linkage: Stack Frames FP ARGS Callee Save Registers Local Variables SP Reference args and local variables at fixed (positive) offset from FP Grows and shrinks during expression evaluation (old FP, RA) Many variations on stacks possible (up/down, last pushed / next ) Block structured languages contain link to lexically enclosing frame Compilers normally keep scalar variables in registers, not memory! High Mem Low Mem

34  1998 Morgan Kaufmann Publishers and UCB 0zero constant 0 1atreserved for assembler 2v0expression evaluation & 3v1function results 4a0arguments 5a1 6a2 7a3 8t0temporary: caller saves...(callee can clobber) 15t7 MIPS: Software conventions for Registers 16s0callee saves... (caller can clobber) 23s7 24t8 temporary (cont’d) 25t9 26k0reserved for OS kernel 27k1 28gpPointer to global area 29spStack pointer 30fpframe pointer 31raReturn Address (HW) Plus a 3-deep stack of mode bits.

35  1998 Morgan Kaufmann Publishers and UCB MIPS / GCC Calling Conventions FP SP fact: addiu $sp, $sp, -32 sw$ra, 20($sp) sw$fp, 16($sp) addiu$fp, $sp, sw$a0, 0($fp)... lw$31, 20($sp) lw$fp, 16($sp) addiu$sp, $sp, 32 jr$31 ra old FP ra old FP ra FP SP ra FP SP low address First four arguments passed in registers.

36  1998 Morgan Kaufmann Publishers and UCB To summarize:

37  1998 Morgan Kaufmann Publishers and UCB

38  1998 Morgan Kaufmann Publishers and UCB Things we are not going to cover support for procedures linkers, loaders, memory layout stacks, frames, recursion manipulating strings and pointers interrupts and exceptions system calls and conventions Some of these we'll talk about later We've focused on architectural issues –basics of MIPS assembly language and machine code –we’ll build a processor to execute these instructions. Other Issues

39  1998 Morgan Kaufmann Publishers and UCB Design alternative: –provide more powerful operations –goal is to reduce number of instructions executed –danger is a slower cycle time and/or a higher CPI Sometimes referred to as “RISC vs. CISC” –virtually all new instruction sets since 1982 have been RISC –VAX: minimize code size, make assembly language easy instructions from 1 to 54 bytes long! We’ll look at PowerPC and 80x86 Alternative Architectures

40  1998 Morgan Kaufmann Publishers and UCB PowerPC Indexed addressing –example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3] –What do we have to do in MIPS? Update addressing –update a register as part of load (for marching through arrays) –example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4 –What do we have to do in MIPS? Others: –load multiple/store multiple –a special counter register “ bc Loop ” decrement counter, if not 0 goto loop

41  1998 Morgan Kaufmann Publishers and UCB 80x : The Intel 8086 is announced (16 bit architecture) 1980: The 8087 floating point coprocessor is added 1982: The increases address space to 24 bits, +instructions 1985: The extends to 32 bits, new addressing modes : The 80486, Pentium, Pentium Pro add a few instructions (mostly designed for higher performance) 1997: MMX is added “This history illustrates the impact of the “golden handcuffs” of compatibility “adding new features as someone might add clothing to a packed bag” “an architecture that is difficult to explain and impossible to love”

42  1998 Morgan Kaufmann Publishers and UCB A dominant architecture: 80x86 See your textbook for a more detailed description Complexity: –Instructions from 1 to 17 bytes long –one operand must act as both a source and destination –one operand can come from memory –complex addressing modes e.g., “base or scaled index with 8 or 32 bit displacement” Saving grace: –the most frequently used instructions are not too difficult to build –compilers avoid the portions of the architecture that are slow “what the 80x86 lacks in style is made up in quantity, making it beautiful from the right perspective”

43  1998 Morgan Kaufmann Publishers and UCB Instruction complexity is only one variable –lower instruction count vs. higher CPI / lower clock rate Design Principles: –simplicity favors regularity –smaller is faster –good design demands compromise –make the common case fast Instruction set architecture –a very important abstraction indeed! Summary