Bacteria Subsisting on Antibiotics Gautam Dantas Church Lab CEGS Annual Grantee Meeting - 2008.

Slides:



Advertisements
Similar presentations
Hungarian GEnomic Research on pathogenic Microbes Hu-GERM.
Advertisements

Lateral Transfer. Donating Genes Mutation often disrupts the function of a gene Gene transfer is a way to give new functions to the recipient cell Thus,
Mechanisms of Genetic Variation 1 16 Copyright © McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display.
Function-Driven Metagenomics Jo Handelsman. What is Function-Driven Metagenomics? Clone DNA directly from environmental sample Screen clones for expressed.
Control of Microbial Growth Tim Ho University of Alberta, Canada * The materials are mostly based on Dr. Brian Lanoil’s Microb Part.
Antimicrobial Susceptibility Testing – Part II
Results (cont.) Figure 3: Gel results checking for digested DNA fragments using the EcoR1 restriction enzyme. (A) Lane 1 shows blue colony obtained from.
Viral & Prokaryotic Genetics “Simple” Model Systems.
Investigating Mechanisms Of Antimicrobial Resistance Using Molecular Techniques Name: Semina Ploumakis; Life Sciences Department. Supervisors: Professor.
30. Genetics and recombination in bacteria. Lecture Outline 11/16/05 Replication in bacteria Types of recombination in bacteria –Transduction by phage.
General Microbiology (Micr300) Lecture 10 Microbial Genetics (Text Chapter: ; )
Antimicrobials 3: Resistance Dr Fiona Walsh. Objectives of lecture Genetics of resistance Mechanisms of resistance Current and future problems.
Genetic Analysis of Mycobacterial Susceptibility to Antimicrobial Peptides Nima Motamedi Dr. Luiz Bermudez.
1 Bacterial Genetics Part II. 2 Review of the Lac Operon Repressors turn off gene –Lac repressor Inducers bind to and inactivate repressors –Allolactose.
Cloning:Recombinant DNA
CHAPTER 10 Bacterial Genetics.
Microbial Genetics Mutation Genetic Recombination Model organism
Antibiotics Biotechnology II. Univ S. Carolina Antibiotics Disrupt Cell Wall Synthesis, Protein Synthesis, Nucleic Acid Synthesis and Metabolism.
CHAPTER 20 ANTIBIOTIC RESISTANCE
Chapter 9 Genetics of Bacteria and Their Viruses Jones and Bartlett Publishers © 2005.
Genetic transfer and recombination
CHOICE OF ANTIBIOTICS IN THE VIEW OF DEVELOPING ANTIBIOTIC RESISTANCE Dr. Jolanta Miciulevičienė Vilnius City Clinical Hospital National Public Health.
Are we entering a post-antibiotic era?
Bacterial Resistance Problem Space Ehren Bucholtz Saint Mary-of-the-Woods College Mark Gallo Niagara University.
The Antibiotic Sensitivity Test Presented by Marian Mikhail Undergraduate student Biology Major Health and Science Concentration Health and Science Concentration.
Microbiology- a clinical approach by Anthony Strelkauskas et al Chapter 20: Antibiotic resistance.
CHEMOTHERAPY  Antimicrobial chemotherapy  Antiviral chemotherapy  Antiparasitic Drugs  Cancer Chemotherapy.
Antimicrobial Chemotherapy
-Know that we can manipulate genomes by inserting or deleting certain genes. -What about synthesizing an entirely novel genome using sequencing technology?
Immune System SC.912.L Explain the basic functions of the human immune system, including specific and nonspecific immune response, vaccines, and.
Chapter 12 Lecture Outline Molecular Techniques and Biotechnology.
Antibiotic Resistance
The Genetics of Bacteria and Their Viruses
Chapter 20-Antimicrobial Agents _______________:The use of drugs to treat a disease (not necessarily infectious) Antimicrobial drugs: Interfere with the.
THINGS TO BE DISCUSSED Multi resistance antimicrobials Effects of some Antibiotics Research article Case study Future Horizons.
T9: Molecular Characterization of an Unknown P-element Insertion in Drosophila melanogaster.
MEDICATIONS FOR INFECTION Principles of Antiseptic, Disinfectant, & Antimicrobial Therapy ADN 110/cohort 13 1.
The effects of Antibiotics on the growth of bacteria intro
Pathogenicity of Bacteria. Campylobacter spp. Salmonella spp. Escherichia coli 76 Million Cases of Food-borne illness every year in the USA 325,000 result.
Gene Transfer. Gene transfer in bacteria There are three types of gene transfer 1.Transformation 2.Conjugation 3.Transduction.
Bacterial and Viral Genetic Systems Part I Ch. 8 Ebola virus Cholera bacteria H. pylori.
Figure 1. Transposon-tagged mutant chromosome (cmsm). WT S. typhimurium cells (WT cmsm on left) were mutagenized by introducing a transposon (Tn) that.
Inhibiting Microbial Growth in vivo CLS 212: Medical Microbiology.
AIM: Genetic Engineering: changing the DNA of living organisms. 1. Inserting genes into other organisms 2. Selective Breeding 3. Cloning.
Molecular Characterization of an Unknown P-Element Insertion in Drosophila melanogaster.
Justin S Hogg et al. {Genome Biology} 2007, 8:R103 Metagenomics Seminar, Spring 2008 Presenter : Kwangmin Choi.
Phenotypic and Genotypic Characterization of Antibiotic Resistance Integrons in Salmonella enterica serovar Newport Raymond Soto, Department of Microbiology.
FUNCTIONAL CHARACTERIZATION OF THE ANTIBIOTIC RESISTANCE RESERVOIR IN THE HUMAN MICROFLORA Morten O.A Sommer, Gautam Dantas and George M. Church Presented.
Mic 101: Lecture 3 SST Developments of laboratory techniques, vaccination and chemotherapy.
Phenotypic and Genotypic Characterization of Antibiotic Resistance Integrons in Salmonella enterica serovar Newport Raymond Soto, Department of Microbiology;
Antibiotics (anti-microbials)
Prof. Hee Joo, Lee June, 8, Introduction P. aeruginosa –Nosocomial pathogen –Ability to acquire resistance to several antibiotics –Emergence of.
Molecular Mechanisms of Goss’s Wilt Samuel Eastman 1, Guangyong Li 2,3, Fan Yang 2,3, Josh Herr 2,3 and James R. Alfano 1,2,3 1 UNL Undergraduate Microbiology,
Finishing up Bacteria…
Table 2. Evidence of Colonizing Mechanism
Microbial Genetics Eukaryotic microbes: fungi, yeasts Eukaryotic genome Chromosomal DNA Mitochondrial DNA Plasmids in yeast Prokaryotic.
Plant Genetic Transformation
Hunting down the Alien (gene)!
Antibiotic Resistance
Today: Biotechnology Exam #2 Th 10/23 in class.
The Role of Recombinant DNA Technology in Biotechnology
Ex. 11: Chemical Antimicrobial Agents - Antibiotics
Bacteriophages.
Dark blue E. coli had lower growth rate and yield in monoculture but grew faster in coculture with S. enterica. Dark blue E. coli had lower growth rate.
Extra chromosomal Agents Transposable elements
Sohyun Cho (Gabi) Frye Lab
A Presentation by Regina Strelecki
Comparisons of plasmids related to pSJ_255.
Discussion and Future Work
Dissemination of Antibiotic Resistance Genomes
Presentation transcript:

Bacteria Subsisting on Antibiotics Gautam Dantas Church Lab CEGS Annual Grantee Meeting

Agency for healthcare research and quality, 2006 US reported MRSA infections [1000’s] in US: MRSA kills more people than AIDS 2006: 18, : 14,627

Mechanisms of antibiotic resistance antibiotic modificationeffluxtarget modification

resistance gene origin hypothesis: antibiotic resistance genes originated as producer self immunity and was transferred to human pathogens Proc. Nat. Acad. Sci. 70:2276 (1973)

Science 312:374 (2006)

many antibiotics are produced in the environment, but it is likely that they undergo further biological transformations

G. Dantas., M. Sommer et al. Science 320:100 (2008) GROWTH NO GROWTH Bacteria subsisting on antibiotics are widely distributed in the environment

Antibiotic eaters are phylogenetically diverse G. Dantas., M. Sommer et al. Science 320:100 (2008)

microbes subsisting on antibiotics are phylogenetically diverse they comprise of 3 out the 4 major phyla of human microbiomes 27% of the phylogenetic nearest named isolates are pathogens compared to antibiotic producer organisms they constitute a more accessible reservoir of resistance

Bacteria subsisting on antibiotics are extremely resistant G. Dantas., M. Sommer et al. Science 320:100 (2008)

using functional genomic selections we have identified more than 150 unique antibiotic resistance genes from antibiotic eaters

Gentamicin resistance from eater vs. Salmonella enterica subsp. enterica serovar Typhimurium genomic island I Experiments by: G. Dantas, M. Sommer. Unpublished data

resistance genes from some antibiotic catabolizers are identical to resistance genes of pathogens at the nucleotide level

best genetic support for producer hypothesis: >gi| |gb|AY | Enterococcus faecium strain 10/96A vanD gene cluster, complete sequence; and ISEfa4 insertion sequence element >gi| : Streptomyces toyocaensis D-ala- D-ala dipeptidase (vanXst) gene, complete cds; and unknown gene ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 42: 2215 (1998), Science 312:374 (2006), Nature Reviews Microbiology 5:175 (2007)

Producer vs. Pathogen

best homology between resistance gene from producer and pathogen: 66% nucleotide level homology between resistance gene from eater and pathogen: 98.5%, 99.9%, 99.9%, 100% nucleotide level

some antibiotic resistance genes acquired by pathogens by HGT may have originated from antibiotic eaters

Acknowledgements Morten Sommer George Church John Aach Duhee Bang Jay Lee Church Lab Rantimi Oluwasegun (Cornell) Jay Shendure (U.W.) Lynn Bry (BWH Pathology) Roberto Kolter (HMS) Peter Girguis, Hellen White (Harvard) Will Haas (HMS) Wayne Curtis (Penn State) David Ellison

publications about antibiotic resistance

Experimental Design resuspend in minimal media 4x filter 500uL Innoculum 11 soils X 18 antibiotics toothpick passage 1 toothpick passage 2 plate on solid (100,1,0.01uL, no carbon) liquid passage of clones restreak Experiments by: G. Dantas, M. Sommer, R. Oluwasegun.

11 soils: pristine, farm, urban 18 antibiotics: chemical class: beta-lactams quinolones sulfonamides amphenicols aminoglycosides glycopeptides amino-acid deriv origin: natural products semi-synthetic synthetic compounds

Penicillin Catabolism in Action G. Dantas., M. Sommer et al. Science 320:100 (2008)

Penicillin Catabolism in Action

some antibiotic resistance genes acquired by pathogens by HGT may have originated from antibiotic eaters

>gi| |gb|DQ | Acinetobacter baumannii strain DB60079/01 class I integron Experiments by: G. Dantas, M. Sommer. Unpublished data

>dbj|AB | Escherichia coli transposon Tn2610, complete sequence gi| |dbj|AB |_Es TCCGGTGCGGGGACGGCTGCTCAGTGTTGCGCCTGTGTTCGCACGTTCGTGE_AB95Da04_01_mgRes1_R.trim.f TCTGTTCGCACGTTCGT * ***************gi| |dbj|AB |_Es ATCGGTGCGTTCTGATCTTCGCGTCAGACATTGCCGCGGCGCGGGCACAAGE_AB95Da04_01_mgRes1_R.trim.f ATCGGTGCGTTCTGATCTTCGCGTCAGACATTGCCGCGGCGCGGGCACAA **************************************************gi| |dbj|AB |_Es CAAAAAGCCCGGCATCGCTGCCGGGCTCCGGCCCCGTCCTTGGGGCCTTGGE_AB95Da04_01_mgRes1_R.trim.f CAAAAAGCCCGGCATCGCTGCCGGGCTCCGGCCCCGTCCTTGGGGCCTTG **************************************************gi| |dbj|AB |_Es ATGTCGGGTCGTTGCCGGGATCGGACCGCGCTGGCGCGGTCCGGTTCCCTGE_AB95Da04_01_mgRes1_R.trim.f ATGTCGGGTCGTTGCCGGGATCGGACCGCGCTGGCGCGGTCCGGTTCCCT **************************************************gi| |dbj|AB |_Es GACGACCGGGCCAACCGGATCAGAAATCCATGCCGCCCATGCCGCCCATAGE_AB95Da04_01_mgRes1_R.trim.f GACGACCGGGCCAACCGGATCAGAAATCCATGCCGCCCATGCCGCCCATA **************************************************gi| |dbj|AB |_Es CCGCCAGCACCCGGCATGGCCGGCTCTTCCTTCTTCGGCACTTCGGCCACGE_AB95Da04_01_mgRes1_R.trim.f CCGCCAGCACCCGGCATGGCCGGCTCTTCCTTCTTCGGCACTTCGGCCAC **************************************************gi| |dbj|AB |_Es GACCACTTCGGTCGTGATCGCAAGGCCGGCGACGGAAGCGGCGTGCTGCAGE_AB95Da04_01_mgRes1_R.trim.f GACCACTTCGGTCGTGATCGCAAGGCCGGCGACGGAAGCGGCGTGCTGCA **************************************************gi| |dbj|AB |_Es GGGCCGAGCGGGTCACCTTGGTCGGGTCCAGGATGCCCATGGCGATCATGGE_AB95Da04_01_mgRes1_R.trim.f GGGCCGAGCGGGTCACCTTGGTCGGGTCCAGGATGCCCATGGCGATCATG **************************************************gi| |dbj|AB |_Es TCGCCGAACTCGCCGGTGGCGGCGTTGTAGCCGTAGCTGCCTTCGCCGGCGE_AB95Da04_01_mgRes1_R.trim.f TCGCCGAACTCGCCGGTGGCGGCGTTGTAGCCGTAGCTGCCTTCGCCGGC **************************************************gi| |dbj|AB |_Es CTTGACGTTGGCCACGATCACGCTCGGTTCTTCACCGGCGTTGGCCACGAGE_AB95Da04_01_mgRes1_R.trim.f CTTGACGTTGGCCACGATCACGCTCGGTTCTTCACCGGCGTTGGCCACGA **************************************************gi| |dbj|AB |_Es TGGCGCGCAGCGGGGCTTCCAGCGCACGGCGGGTGATGGCGATGCCCAGGGE_AB95Da04_01_mgRes1_R.trim.f TGGCGCGCAGCGGGGCTTCCAGCGCACGGCGGGTGATGGCGATGCCCAGG **************************************************gi| |dbj|AB |_Es TTCTGGTCTTCGTTGATGCCCTGCCAGGGCAGATCCGTGCACAGCACCTTGE_AB95Da04_01_mgRes1_R.trim.f TTCTGGTCTTCGTTGATGCCCTGCCAGGGCAGATCCGTGCACAGCACCTT **************************************************gi| |dbj|AB |_Es GCCGTAGAAGAACAGCAAGGCCGCCAATGCCTGACGATGCGTGGAGACCGGE_AB95Da04_01_mgRes1_R.trim.f GCCGTAGAAGAACAGCAAGGCCGCCAATGCCTGACGATGCGTGGAGACCG **************************************************gi| |dbj|AB |_Es AAACCTTGCGCTCGTTCGCCAGCCAGGACAGAAATGCCTCGACTTCGCTGGE_AB95Da04_01_mgRes1_R.trim.f AAACCTTGCGCTCGTTCGCCAGCCAGGACAGAAATGCCTCGACTTCGCTG **************************************************gi| |dbj|AB |_Es CTGCCCAAGGTTGCCGGGTGACGCACACCGTGGAAACGGATGAAGGCACGGE_AB95Da04_01_mgRes1_R.trim.f CTGCCCAAGGTTGCCGGGTGACGCACACCGTGGAAACGGATGAAGGCACG **************************************************gi| |dbj|AB |_Es AACCCAGTGGACATAAGCCTGTTCGGTTGGTAAGCTGTAATGCAAGTAGCGE_AB95Da04_01_mgRes1_R.trim.f AACCCAGTGGACATAAGCCT ******************** Experiments by: G. Dantas, M. Sommer. Unpublished data

>gi| |gb|AF | Pseudomonas sp. plasmid pPSTG2 Experiments by: G. Dantas, M. Sommer. Unpublished data