Enzymatic Hydrolysis of Cellulose and Hemicellulose in Solids Prepared by Leading Pretreatment Technologies Charles E. Wyman, Dartmouth College Y. Y. Lee,

Slides:



Advertisements
Similar presentations
Dr. Hemant Pendse Michael Bilodeau Amy Luce February 4, 2015
Advertisements

1 9/21/2010 Iman Rusmana Department of Biology Bogor Agricultural University What is Ethanol? Ethanol Production From Biomass Ethanol Production From Grains.
Improve Xylose Utilization 1.The significance of improving xylose utilization: The commercialization of second-generation bioethanol has not been realized.
Enzymatic Hydrolysis of Poplar Pretreated by Ammonia Fiber Explosion James F. Heidenreich, Tamika Bradshaw, Bruce E. Dale and Venkatesh Balan BCRL, Department.
Rosemary Dobson University of Stellenbosch
Enzymatic Production of Xylooligosaccharides from Corn Stover and Corn Cobs Treated with Aqueous Ammonia Yongming Zhu1, Tae Hyun Kim2, Y. Y. Lee1, Rongfu.
Biomass Refining CAFI Auburn University Soaking in Aqueous Ammonia (SAA) for Pretreatment of Corn Stover Tae Hyun Kim and Y. Y. Lee Department of Chemical.
High solid loading enzymatic hydrolysis of various paper wastes Methods and Kinetic model Lei Wang *, Richard Templer ‡ & Richard J. Murphy * * Division.
Lime Pretreatment of Poplar wood Chemical Engineering Department Texas A&M University.
Hema Rughoonundun Research Week Outline of Presentation The MixAlco Process Introduction Sludge Materials and Methods Results Fermentation of sludge.
Richard T. Elander, National Renewable Energy Laboratory
CAFI 2 Project Update NREL and Neoterics Int’l. Rick Elander and Tim Eggeman March 16, 2006.
Characteristics of Biomass Pretreatments Studied by the CAFI Bruce E. Dale, Richard T. Elander, Mark T. Holtzapple, Michael R. Ladisch, Yoon Y. Lee and.
Charles E. Wyman, Dartmouth College Y. Y. Lee, Auburn University
Pretreatment Fundamentals Bruce E. Dale, Richard T. Elander, Mark T. Holtzapple, Rajeev Kumar, Michael R. Ladisch, Yoon Y. Lee, Nate Mosier, Jack Saddler,
Release of Sugars for Fermentation to Ethanol by Enzymatic Digestion of Corn Stover Pretreated by Leading Technologies Charles E. Wyman, Dartmouth College/University.
Enzymatic Digestion of Corn Stover and Poplar Wood after Pretreatment by Leading Technologies Charles E. Wyman, Dartmouth College/University of California.
Ammonia Fiber Explosion (AFEX) for Pretreatment of Corn Stover: Recent Research Results Farzaneh Teymouri, Hasan Alizadeh, Lizbeth Laureano-Perez and Bruce.
1 NREL Update—CAFI 2 Teleconference Rick Elander National Renewable Energy Laboratory National Bioenergy Center Golden, CO February 18, 2004 Biomass Refining.
Consortium for Biomass Refining Based on Leading Pretreatment Technologies Charles E. Wyman, Dartmouth College/University of California Bruce E. Dale,
Abstract NaOH and its derivatives are used as pulping reagents, wherein the spent NaOH is recovered in salt form and reused. In this study, low concentration.
Fundamental Understanding of Biomass Pretreatment Technologies: The Case of Ammonia Fiber Expansion (AFEX) Venkatesh Balan, Shishir Chundawat, Bryan Bals.
Maximum Total Time for Talk = 25 minutes. Comparative Sugar Recovery Data from Application of Leading Pretreatment Technologies to Corn Stover and Poplar.
Cellobiose Glucose Low DP Cello-oligosaccharides (LD-COS) High DP Cello-oligosaccharides (HD-COS) Not picked in chromatograph Introduction Various forms.
Initial Comparative Process Economics of Leading Pretreatment Technologies Richard T. Elander, National Renewable Energy Laboratory Charles E. Wyman, Dartmouth.
Slide 1 Apollo Program for Biomass Liquids What Will it Take? Michael R. Ladisch Laboratory of Renewable Resources Engineering Agricultural and Biological.
Comparative Data for Enzymatic Digestion of Corn Stover and Poplar Wood after Pretreatment by Leading Technologies Charles E. Wyman, Dartmouth College/University.
Modeling Biomass Conversion to Transportation Fuels Jacob Miller Advisor: Dr. Eric Larson.
Effects of Fluid Velocity on Solubilization of Total Mass, Xylan and Lignin for Hot Water Only and 0.05wt% Sulfuric acid Pretreatment of Corn Stover Thayer.
Developing a generic approach for modelling production processes covered in BREW Morna Isaac, Martin Patel.
Food, Feedstocks and Ethanol Production Michael H. Penner Oregon State University Ethanol Workshop Series: Oregon May 8, 2001.
Optimization of Controlled pH Liquid Hot Water Pretreatment of Corn Fiber and Stover Nathan Mosier, Rick Hendrickson, Youngmi Kim, Meijuan Zeng, Bruce.
Integration of Leading Biomass Pretreatment Technologies with Enzymatic Digestion and Hydrolyzate Fermentation DOE OBP Pretreatment Core R&D Gate Review.
Speaker: Jeng-Chen Liu(劉政成) Student ID: P
ERT Biofuel BIO ETHANOL What, Why, How, How much, ….
Optimal Conditions for Batch Tube Pretreatment Hot water only, 210 o C, 6 min -Total xylose yield is 52.1% % xylose and 106% glucose overall mass.
National Renewable Energy Laboratory Overall Energy Balance for the Corn Stover to Ethanol Process Brianna G. Atherton, Mark F. Ruth, John L. Jechura,
Pretreatment of Lignocellulosic Biomass: Update on Biomass Refining CAFI Studies Charles E. Wyman, Dartmouth College, Session Chair Tim Eggeman, Neoterics.
Economics CAFI II Stage Gate Review Denver, CO May 1, 2007 Tim Eggeman* - Neoterics International Richard Elander - National Renewable Energy Laboratory.
1 Comparison of Selected Results for Application of Leading Pretreatment Technologies to Corn Stover Charles E. Wyman, Dartmouth College Y. Y. Lee, Auburn.
A Comparison of Batch, Stop- Flow-Stop, and Flowthrough Pretreatments of Corn Stover Chaogang Liu, Charles E. Wyman Thayer School of Engineering Dartmouth.
The Economics of Alternative Energy Sources and Globalization: The Road Ahead Embassy Suites Airport, Orlando, FL 1.
A UBURN U NIVERSITY Pretreatment and Fractionation of Corn Stover with Aqueous Ammonia Tae Hyun Kim †, Changshin Sunwoo* and Y.Y. Lee † † Department of.
1 NREL/Neoterics Update—CAFI 2 Teleconference Rick Elander National Renewable Energy Laboratory National Bioenergy Center Golden, CO Tim Eggeman Neoterics.
Logistical Support and Modeling Efforts in Pretreatment Research Paper 516g Annual Meeting of the American Institute of Chemical Engineers Thursday, November.
1 AFEX Treatment on Poplar and Hydrolysis Balan Venkatesh, Shishir Chundawat and Bruce E. Dale BCRL, Michigan State University (
Comparison of Selected Results for Application of Leading Pretreatment Technologies to Corn Stover Charles E. Wyman, Dartmouth College Y. Y. Lee, Auburn.
Impact of Inhibitors Associated with Lignocellulose Hydrolysate on CBP Yeast and Enzyme Activity Sizwe Mhlongo Energy Postgraduate Conference 2013.
Ethanol production from oil seed cakes and subsequent biological treatment of the remaining biomass for methane production by Chutima Swangkotchakorn (DTU)
Biomass Refining CAFI Overall Sugar Yields from Corn Stover via Thermochemical Hemicellulose Hydrolysis Followed by Enzymatic Hydrolysis Todd A. Lloyd.
1 Auburn UniversityBiomass Refining CAFI Corn stover Wood chip Bagasse Rice straw Sawdust Biomass Ethanol Fuel.
TM OMICS 2015: Green Chemistry Improvements to the Biorefinery Model Through Lignin Valorization Ian Klein, Ph.D Spero Energy, Inc.
S-1007 Multi-State Research Committee
Introduction Introduction ABSTRACT Hydrolysis of cellulose by cellulase enzyme is a solid-liquid heterogeneous reaction. As such the reaction is strongly.
Opportunities for Integration of Forest By-products with Conventional Industry Siddharth Jain, Maryam Akbari, Amit Kumar * Department of Mechanical Engineering,
Thermo-chemical pretreatments for the combined recovery of extractives and bioethanol production from softwood bark C. Sambusiti, Chloé Navas, Eric Dubreucq,
Optimizing conditions for sugar release from municipal solid wastes (MSW) for biofuel production Jwan J. Abdullah University of Nottingham Supervised by:
Biorefinery for Biofuel Production
Topic : Bio-Ethanol Advisor : Prof. Jo-Shu Chang NURHAYATI / 林海亞 N PAPER REVIEW.
The Sugarcane Industry Wastes Considerable Energy The current sugarcane market in Brazil produces an excess of unused resources. Following sugar extraction,
Mass Balance of ARP/SSF Biomass Ammonia recycling Fermentation ARP Reactor Soluble sugar Ammonia Washing 100 lb (dry basis) G:36.1 lb X: 21.4 lb O: 7.8.
Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor Hongman ZHANG 1 ;Qiang JIN 2 ;Rui XU 2 ;Lishi YAN.
Phalaris aquatica L. lignocellulosic biomass as second generation bioethanol feedstock I. Pappas, Z. Koukoura, C. Kyparissides, Ch. Goulas and Ch. Tananaki.
Evaluation of a Flowthrough Reactor for Corn Stover Pretreatment Chaogang Liu, Charles E. Wyman Thayer School of Engineering Dartmouth College Hanover,
Hot Water Extraction of Woodchips and Utilization of the Residual Chips and Wood Extracts Date 2/2/2011 Biomass Program IBR Platform – DEFG607G Thomas.
Cellulosic Ethanol Snoop Loops Addison, Kane, Samantha.
FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FEEDSTOCKS
Nassim NADERI MS Food Biotechnology Research Assistant
BRC Science Highlight Next-generation ammonia pretreatment enhances cellulosic biofuel production Objective A new liquid ammonia to improve the deconstruction.
Bioenergy-Fermentation
Presentation transcript:

Enzymatic Hydrolysis of Cellulose and Hemicellulose in Solids Prepared by Leading Pretreatment Technologies Charles E. Wyman, Dartmouth College Y. Y. Lee, Auburn University Mohammed Moniruzzaman, Genencor International Bruce E. Dale, Michigan State University Tim Eggeman, Neoterics International Richard T. Elander, National Renewable Energy Laboratory Michael R. Ladisch, Purdue University Mark T. Holtzapple, Texas A&M University John N. Saddler, University of British Columbia Bioprocessing of Agricultural Feedstocks: Report on Pretreatment for Biomass Refining 2 nd World Congress on Industrial Biotechnology and Bioprocessing Orlando, Florida April 20, 2005 Biomass Refining CAFI

USDA IFAFS Project Tasks Apply leading pretreatment technologies to prepare biomass for conversion to products Characterize resulting fluid and solid streams Close material and energy balances for each pretreatment process Determine cellulose digestibility and liquid fraction fermentability Compare performance of pretreatment technologies on corn stover Biomass Refining CAFI

Pretreatment and Enzymatic Hydrolysis Stages Biomass Refining CAFI Stage 2 Enzymatic hydrolysis Dissolved sugars, oligomers Solids: cellulose, hemicellulose, lignin Chemicals Biomass Stage 1 Pretreatment Dissolved sugars, oligomers, lignin Residual solids: cellulose, hemicellulose, lignin Cellulase enzyme

Calculation of Sugar Yields Comparing the amount of each sugar monomer or oligomer released to the maximum potential amount for that sugar would give yield of each However, most cellulosic biomass is richer in glucose than xylose Consequently, glucose yields have a greater impact than for xylose Sugar yields in this project were defined by dividing the amount of xylose or glucose or the sum of the two recovered in each stage by the maximum potential amount of both sugars –The maximum xylose yield is 24.3/64.4 or 37.7% –The maximum glucose yield is 40.1/64.4 or 62.3% –The maximum amount of total xylose and glucose is 100%. Biomass Refining CAFI

Pretreatment Yield Comparisons at 60 FPU/g Glucan Pretreatment system Xylose yields*Glucose yields*Total sugars* Stage 1Stage 2Total xylose Stage 1 Stage 2Total glucose Stage 1Stage 2Combined total Maximum possible Dilute acid32.1/ / / /91.7 Flowthrough36.3/1.70.8/ /2.44.5/ / / / /63.8 Controlled pH 21.8/ / / AFEXND/ ND/92.0 ARP17.8/ / / /76.4 Lime9.2/ / / / / /80.3 *Cumulative soluble sugars as total/monomers. Single number = just monomers. Increasing pH

Pretreatment Yield Comparisons at 15 FPU/g Glucan Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime

Pretreatment Yield Comparisons at 15 FPU/g Glucan Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime

Pretreatment Yield Comparisons at 15 FPU/g Glucan Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime

Pretreatment Yield Comparisons at 15 FPU/g Glucan Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime

Pretreatment Yield Comparisons at 15 FPU/g Glucan Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime

Pretreatment Yield Comparisons at 15 FPU/g Glucan Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime

Pretreatment Yield Comparisons at 15 FPU/g Glucan Dilute acid Flowthrough Controlled pH Maximum possible ARP AFEX Lime

Pretreatment Yield Comparisons at 15 FPU/g Glucan

Observations from IFAFS Project for Corn Stover All pretreatments were effective in making cellulose accessible to enzymes Lime, ARP, and flowthrough remove substantial amounts of lignin and achieved somewhat higher glucose yields from enzymes than dilute acid or controlled pH However, AFEX achieved slightly higher yields from enzymes even though no lignin was removed Cellulase was effective in releasing residual xylose from all pretreated solids Xylose release by cellulase was particularly important for the high-pH pretreatments by AFEX, ARP, and lime, with about half being solubilized by enzymes for ARP, two thirds for lime, and essentially all for AFEX Biomass Refining CAFI

Caveats The yields can be further increased for some pretreatments with enzymes a potential key Mixed sugar streams will be better used in some processes than others Oligomers may require special considerations, depending on process configuration and choice of fermentative organism The conditioning and fermentability of the sugar streams must be assessed These results are only for corn stover, and performance with other feedstocks will likely be different Biomass Refining CAFI

Tasks for the DOE OBP Project Biomass Refining CAFI Corn stover and poplar pretreated by leading technologies to improve cellulose accessibility to enzymes Conditioning methods developed as needed to maximize fermentation yields by a recombinant yeast, the cause of inhibition determined, and fermentations modeled Cellulose and hemicellulose in pretreated biomass enzymatically hydrolyzed, as appropriate, and models developed to understand the relationship between pretreated biomass features, advanced enzyme characteristics, and enzymatic digestion results Capital and operating costs estimated for each integrated pretreatment, hydrolysis, and fermentation system and used to direct research

Tasks for the DOE OBP Project Biomass Refining CAFI Corn stover and poplar pretreated by leading technologies to improve cellulose accessibility to enzymes Conditioning methods developed as needed to maximize fermentation yields by a recombinant yeast, the cause of inhibition determined, and fermentations modeled Cellulose and hemicellulose in pretreated biomass enzymatically hydrolyzed, as appropriate, and models developed to understand the relationship between pretreated biomass features, advanced enzyme characteristics, and enzymatic digestion results Capital and operating costs estimated for each integrated pretreatment, hydrolysis, and fermentation system and used to direct research

Measure enzymatic hydrolysis of cellulose and hemicellulose as a function of cellulase and xylanase loadings and beta glucosidase and beta xylosidase supplementation Apply fractional factorial experimental design to determine key trends and interactions Characterize enzyme and substrate features for each feedstock and pretreatment Develop kinetic models to better understand key factors impacting performance Define routes to improve cellulose and hemicellulose conversion with less enzyme Enzymatic Hydrolysis Plan Biomass Refining CAFI

Enzymatic Hydrolysis of Cellulose from Pretreated Poplar Wood 2% glucan concentration 50 FPU/g glucan, no β-glucosidase supplementation

Pretreated Substrate Schedule Pretreatment/SubstrateExpected Date Dilute Acid/Corn StoverSeptember 2004 Dilute Acid/Poplar (Bench Scale)October 2004 Dilute Acid/Poplar (Pilot Plant)December 2004 SO 2 /Corn StoverMarch 2005 Controlled pH/PoplarMay 2005 SO 2 /PoplarAugust 2005 Ammonia Fiber Explosion/PoplarSeptember 2005 Ammonia Recycled Percolation/PoplarOctober 2005 Flowthrough/PoplarMarch 2006 Lime/PoplarApril 2006 Biomass Refining CAFI

Non-mechanistic (NM): 2 –Based on data correlation without an explicit calculation of adsorbed enzyme concentration. Kinetic Models* Functionally-based (FB): 3 –Featuring an adsorption model, multiple enzyme activities, and substrate variables. *Zhang and Lynd ( in press) Structurally-based (SB): 0 –Structural features of cellulase and interaction between substrate and enzyme. Semi-mechanistic (SM): 8 –Based on single enzyme activity and single substrate feature (concentration). Biomass Refining CAFI

Predictions of Effect of Lignin by Selected Models South et al. Phillipidis et al. Holtzapple et al. 100 g substrate/L, 50% cellulose, 10 FPU cellulase/g cellulose, 2 CBU/FPU NM, 5 FPU/gm Biomass Refining CAFI

Acknowledgments US Department of Agriculture Initiative for Future Agricultural and Food Systems Program, Contract US Department of Energy Office of the Biomass Program, Contract DE-FG36-04GO14017 Natural Resources Canada Our team from Dartmouth College; Auburn, Michigan State, Purdue, and Texas A&M Universities; the University of British Columbia; Genencor International; and the National Renewable Energy Laboratory Biomass Refining CAFI

Questions?

Stop

Pretreatment Yield Comparisons at 15 FPU/g Glucan Pretreatment system Xylose yields*Glucose yields*Total sugars* Stage 1Stage 2Total xylose Stage 1 Stage 2Total glucose Stage 1Stage 2Combined total Maximum possible Dilute acid32.1/ / / /91.5 Flowthrough36.3/1.70.6/ /2.24.5/ / / / /61.8 Controlled pH 21.8/ /9.93.5/ / / /63.0 AFEX34.6/ /89.1 ARP17.8/ / / /71.6 Lime9.2/ / / / / /77.2 *Cumulative soluble sugars as total/monomers. Single number = just monomers. Increasing pH