Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.

Slides:



Advertisements
Similar presentations
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Advertisements

Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
High Temperature Superconductivity: D. Orgad Racah Institute, Hebrew University, Jerusalem Stripes: What are they and why do they occur Basic facts concerning.
Hole-Doped Antiferromagnets: Relief of Frustration Through Stripe Formation John Tranquada International Workshop on Frustrated Magnetism September 13.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
Quantum antiferromagnetism and superconductivity Subir Sachdev Talk online at
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Reviews:
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Physical Review B 71, and (2005), cond-mat/
Magnetic phases and critical points of insulators and superconductors Colloquium article in Reviews of Modern Physics, July 2003, cond-mat/ cond-mat/
Quantum phase transitions of correlated electrons and atoms Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz.
Subir Sachdev Quantum phase transitions of ultracold atoms Transparencies online at Quantum Phase Transitions Cambridge.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Quantum.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Competing orders in the cuprate superconductors.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Insights into quantum matter from new experiments Detecting new many body states will require: Atomic scale resolution of magnetic fields Measuring and.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Talk online: Sachdev Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Talk online:
Spin Waves in Stripe Ordered Systems E. W. Carlson D. X. Yao D. K. Campbell.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Quantum phase transitions cond-mat/ Quantum Phase Transitions Cambridge University Press.
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
The quantum mechanics of two dimensional superfluids Physical Review B 71, and (2005), cond-mat/ Leon Balents (UCSB) Lorenz Bartosch.
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); cond-mat/ cond-mat/ Leon Balents.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang.
Quantum phase transitions: from Mott insulators to the cuprate superconductors Colloquium article in Reviews of Modern Physics 75, 913 (2003) Leon Balents.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
Magnetic phases and critical points of insulators and superconductors Colloquium article: Reviews of Modern Physics, 75, 913 (2003). Talks online: Sachdev.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Quantum phase transitions of correlated electrons and atoms See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.
Subir Sachdev Yale University Phases and phase transitions of quantum materials Talk online: or Search for Sachdev on.
SO(5) Theory of High Tc Superconductivity Shou-cheng Zhang Stanford University.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Quantum theory of vortices and quasiparticles in d-wave superconductors.
Detecting quantum duality in experiments: how superfluids become solids in two dimensions Talk online at Physical Review.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Tuning order in the.
Deconfined quantum criticality Leon Balents (UCSB) Lorenz Bartosch (Frankfurt) Anton Burkov (Harvard) Matthew Fisher (UCSB) Subir Sachdev (Harvard) Krishnendu.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Competing orders and quantum criticality
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Order.
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Understanding.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
SNS Experimental FacilitiesOak Ridge X /arb Spin dynamics in cuprate superconductors T. E. Mason Spallation Neutron Source Project Harrison Hot Springs.
The quantum phase transition between a superfluid and an insulator: applications to trapped ultracold atoms and the cuprate superconductors.
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Science 303, 1490 (2004); cond-mat/ cond-mat/
Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov
Breakdown of the Landau-Ginzburg-Wilson paradigm at quantum phase transitions Science 303, 1490 (2004); Physical Review B 70, (2004), 71,
Quantum phases and critical points of correlated metals
Deconfined quantum criticality
Presentation transcript:

Talk online at Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Order and quantum phase transitions in the cuprate superconductors

Mott insulator: square lattice antiferromagnet Parent compound of the high temperature superconductors: Ground state has long-range magnetic Néel order, or a “spin density wave (SDW)” Néel order parameter:

Introduce mobile carriers of density  by substitutional doping of out-of-plane ions e.g. Exhibits superconductivity below a high critical temperature T c

low Several low temperature properties of the cuprate superconductors appear to be qualitatively similar to those predicted by BCS theory. Bose-Einstein condensation of Cooper pairs

Superconductivity in a doped Mott insulator Hypothesis: cuprate superconductors are characterized by additional order parameters, associated with the proximate Mott insulator, along with the familiar order associated with the Bose condensation of Cooper pairs in BCS theory. These orders lead to new low energy excitations. Predictions of BCS associated with underlying Fermi surface do not apply Review: S. Sachdev, Science 286, 2479 (1999).

Superconductivity in a doped Mott insulator Study physics in a generalized phase diagram which includes new phases (which need not be experimentally accessible) with long- range correlations in the additional order parameters. Expansion away from quantum critical points provides a systematic and controlled theory of the low energy excitations (including their behavior near imperfections such as impurities and vortices and their response to applied fields) and of crossovers into “incoherent” regimes at finite temperature. Review: S. Sachdev, Science 286, 2479 (1999).

Outline I.What is a quantum phase transition ? II.The simplest quantum phase transition Quantum Ising Chain III.Coupled Ladder Antiferromagnet IV.A global phase diagram V.Recent neutron scattering and STM experiments on the cuprates. VI.Conclusions I. What is a quantum phase transition ?

What is a quantum phase transition ? Non-analyticity in ground state properties as a function of some control parameter g E g True level crossing: Usually a first-order transition E g Avoided level crossing which becomes sharp in the infinite volume limit: second-order transition

T Quantum-critical Critical excitations control dynamics in the wide quantum-critical region at non-zero temperatures. No collective classical variables for large scale dynamics. Why study quantum phase transitions ? Theory for a quantum system with strong correlations: describe phases on either side of g c by expanding in deviation from the quantum critical point. g gcgc Important property of ground state at g=g c : temporal and spatial scale invariance; characteristic energy scale at other values of g: Critical point is a novel state of matter without quasiparticle excitations

Outline I.What is a quantum phase transition ? II.The simplest quantum phase transition Quantum Ising Chain III.Coupled Ladder Antiferromagnet IV.A global phase diagram V.Recent neutron scattering and STM experiments on the cuprates. VI.Conclusions II. The simplest quantum phase transition

I. Quantum Ising Chain 2Jg

Full Hamiltonian leads to entangled states at g of order unity

Weakly-coupled qubits Ground state: Lowest excited states: Coupling between qubits creates “flipped-spin” quasiparticle states at momentum p Entire spectrum can be constructed out of multi-quasiparticle states p

Ground states: Lowest excited states: domain walls Coupling between qubits creates new “domain- wall” quasiparticle states at momentum p p Strongly-coupled qubits

Entangled states at g of order unity g gcgc “Flipped-spin” Quasiparticle weight Z A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, (1994) g gcgc Ferromagnetic moment N 0 P. Pfeuty Annals of Physics, 57, 79 (1970) g gcgc Excitation energy gap 

Quasiclassical dynamics S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997). Crossovers at nonzero temperature

Outline I.What is a quantum phase transition ? II.The simplest quantum phase transition Quantum Ising Chain III.Coupled Ladder Antiferromagnet IV.A global phase diagram V.Recent neutron scattering and STM experiments on the cuprates. VI.Conclusions III. Coupled ladder antiferromagnet

S=1/2 spins on coupled 2-leg ladders II. Coupled Ladder Antiferromagnet N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994). J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999). M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002).

Square lattice antiferromagnet Experimental realization: Ground state has long-range magnetic (Neel) order Excitations: 2 spin waves

Weakly coupled ladders Paramagnetic ground state Spin gap Real space Cooper pairs with their charge localized. Upon doping, motion and Bose-Einstein condensation of Cooper pairs leads to superconductivity

Excitations Excitation: S=1 exciton (spin collective mode) Energy dispersion away from antiferromagnetic wavevector Spin gap S=1/2 spinons are confined by a linear potential.

1 c Quantum paramagnet Electrons in charge-localized Cooper pairs Neel state Magnetic order as in La 2 CuO 4 Neel order N 0 Spin gap  T=0  in  cuprates 

Spin gap Paramagnetic ground state of coupled ladder model

Spin gap Can this be a paramagnetic ground state of a system with full square lattice symmetry ? Such a state breaks lattice symmetry by the appearance of bond order Such bond order is generic in paramagnetic states proximate to a magnetic state with collinear spins N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

Origin of bond order Quantum “entropic” effects prefer bond-ordered configurations in which the largest number of singlet pairs can resonate. The state on the upper left has more flippable pairs of singlets than the one on the lower left. These effects lead to a broken square lattice symmetry near the transition to the magnetically ordered states with collinear spins.

Outline I.What is a quantum phase transition ? II.The simplest quantum phase transition Quantum Ising Chain III.Coupled Ladder Antiferromagnet IV.A global phase diagram V.Recent neutron scattering and STM experiments on the cuprates. VI.Conclusions IV. A global phase diagram

Order parameters in the cuprate superconductors 1. Pairing order of BCS theory Bose-Einstein condensation of Cooper pairs Orders associated with proximate Mott insulator 2. Collinear magnetic order 3. Bond order For most wavevectors, these orders also imply a modulation in the site charge density (“charge order”). However, the amplitude of the charge order should be strongly suppressed by Coulomb interactions. S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991).

Doping a paramagnetic bond-ordered Mott insulator Systematic Sp(N) theory of translational symmetry breaking, while preserving spin rotation invariance. S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991). Instability to phase separation below this line d-wave superconductor Superconductor with co-existing bond-order Mott insulator with bond-order T=0

IV. A global phase diagram Include long-range Coulomb interactions: frustrated phase separation V.J. Emery, S.A. Kivelson, and H.Q. Lin, Phys. Rev. Lett. 64, 475 (1990). M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999) M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. B 62, 6721 (2000). M. Vojta, Phys. Rev. B 66, (2002). See also J. Zaanen, Physica C 217, 317 (1999), S. White and D. J. Scalapino, Phys. Rev. Lett. 80, 1272 (1998). C. Castellani, C. Di Castro, and M. Grilli, Phys.Rev. Lett. 75, 4650 (1995). S. Mazumdar, R.T. Clay, and D.K. Campbell, Phys. Rev. B 62, (2000). Collinear magnetic order Bond order

Outline I.What is a quantum phase transition ? II.The simplest quantum phase transition Quantum Ising Chain III.Coupled Ladder Antiferromagnet IV.A global phase diagram V.Recent neutron scattering and STM experiments on the cuprates. VI.Conclusions V. Recent neutron scattering and STM experiments on the cuprates

kyky kxkx  /a 0 Insulator  ~ SC J. M. Tranquada et al., Phys. Rev. B 54, 7489 (199 6). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999) S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, (2001). (additional commensurability effects near  =0.125) T=0 phases of LSCO V. Tuning magnetic order in LSCO by a magnetic field SC+SDW SDW Néel

kyky kxkx  /a 0 Insulator  ~ SC J. M. Tranquada et al., Phys. Rev. B 54, 7489 (199 6). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999) S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, (2001). (additional commensurability effects near  =0.125) T=0 phases of LSCO V. Tuning magnetic order in LSCO by a magnetic field SC+SDW SDW Néel

Superconductor with T c,min =10 K kyky kxkx  /a 0  ~ SC J. M. Tranquada et al., Phys. Rev. B 54, 7489 (199 6). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999) S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, (2001). (additional commensurability effects near  =0.125) T=0 phases of LSCO V. Tuning magnetic order in LSCO by a magnetic field SC+SDW SDW Néel

Spin density wave order Collinear spins

Superconductor with T c,min =10 K kyky kxkx  /a 0  ~ SC T=0 phases of LSCO V. Tuning magnetic order in LSCO by a magnetic field SC+SDW SDW Néel Use simplest assumption of a direct second-order quantum phase transition between SC and SC+SDW phases

G. Aeppli, T.E. Mason, S,M. Hayden, H.A. Mook, and J. Kulda, Science 278, 1432 (1998).

Superconductor with T c,min =10 K kyky kxkx  /a 0  ~ SC T=0 phases of LSCO V. Tuning magnetic order in LSCO by a magnetic field SC+SDW SDW Néel H Follow intensity of elastic Bragg spots in a magnetic field Use simplest assumption of a direct second-order quantum phase transition between SC and SC+SDW phases

H  Spin singlet state SC+SDW Characteristic field g  B H = , the spin gap 1 Tesla = meV Effect is negligible over experimental field scales cc SC Zeeman term: only effect in coupled ladder system

uniform Dominant effect with coexisting superconductivity: uniform softening of spin excitations by superflow kinetic energy E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001). Competing order is enhanced in a “halo” around each vortex

Main results E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001). T=0  cc D. P. Arovas, A. J. Berlinsky, C. Kallin, and S.-C. Zhang, Phys. Rev. Lett. 79, 2871 (1997) proposed static local spins within vortex cores in SC phase “Normal” (Bond order)

Neutron scattering measurements of static spin correlations of the superconductor+spin-density-wave (SC+SDW) in a magnetic field H (Tesla)

B. Lake, H. M. Rønnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, T. E. Mason, Nature, 415, 299 (2002). See also S. Katano, M. Sato, K. Yamada, T. Suzuki, and T. Fukase, Phys. Rev. B 62, R14677 (2000).

Neutron scattering observation of SDW order enhanced by superflow.  cc Prediction: SDW fluctuations enhanced by superflow and bond order pinned by vortex cores (no spins in vortices). Should be observable in STM K. Park and S. Sachdev Phys. Rev. B 64, (2001). Y. Zhang, E. Demler and S. Sachdev, Phys. Rev. B 66, (2002). “Normal” (Bond order)

STM around vortices induced by a magnetic field in the superconducting state J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). Local density of states 1Å spatial resolution image of integrated LDOS of Bi 2 Sr 2 CaCu 2 O 8+  ( 1meV to 12 meV) at B=5 Tesla. S.H. Pan et al. Phys. Rev. Lett. 85, 1536 (2000).

100Å b 7 pA 0 pA Vortex-induced LDOS of Bi 2 Sr 2 CaCu 2 O 8+  integrated from 1meV to 12meV J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).

Fourier Transform of Vortex-Induced LDOS map J. Hoffman et al. Science, 295, 466 (2002). K-space locations of vortex induced LDOS Distances in k –space have units of 2  /a 0 a 0 =3.83 Å is Cu-Cu distance K-space locations of Bi and Cu atoms

Fourier Transform of Vortex-Induced LDOS map K-space locations of vortex induced LDOS Our interpretation: LDOS modulations are signals of bond order of period 4 revealed in vortex halo

C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, cond-mat/ V. STM image of LDOS modulations in Bi 2 Sr 2 CaCu 2 O 8+  in zero magnetic field Period = 4 lattice spacings

C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, cond-mat/ Spectral properties of the STM signal are sensitive to the microstructure of the charge order Measured energy dependence of the Fourier component of the density of states which modulates with a period of 4 lattice spacings M. Vojta, Phys. Rev. B 66, (2002); D. Podolsky, E. Demler, K. Damle, and B.I. Halperin, cond-mat/ Theoretical modeling shows that this spectrum is best obtained by a modulation of bond variables, such as the exchange, kinetic or pairing energies.

Global phase diagram M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999) M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. B 62, 6721 (2000). M. Vojta, Phys. Rev. B 66, (2002);. See also J. Zaanen, Physica C 217, 317 (1999), V.J. Emery, S.A. Kivelson, and H.Q. Lin, Phys. Rev. Lett. 64, 475 (1990). S. White and D. Scalapino, Phys. Rev. Lett. 80, 1272 (1998). C. Castellani, C. Di Castro, and M. Grilli, Phys.Rev. Lett. 75, 4650 (1995). S. Mazumdar, R.T. Clay, and D.K. Campbell, Phys. Rev. B 62, (2000). Collinear magnetic order Bond order Neutrons STM

Conclusions I.Cuprate superconductivity is associated with doping Mott insulators with charge carriers. II.Order parameters characterizing the Mott insulator compete with the order associated with the Bose-Einstein condensation of Cooper pairs. III.Classification of Mott insulators shows that the appropriate order parameters are collinear magnetism and bond order. IV.Theory of quantum phase transitions provides semi- quantitative predictions for neutron scattering measurements of spin-density-wave order in superconductors; theory also proposes a connection to STM experiments. V.Future experiments should search for SC+SDW to SC quantum transition driven by a magnetic field. Conclusions I.Cuprate superconductivity is associated with doping Mott insulators with charge carriers. II.Order parameters characterizing the Mott insulator compete with the order associated with the Bose-Einstein condensation of Cooper pairs. III.Classification of Mott insulators shows that the appropriate order parameters are collinear magnetism and bond order. IV.Theory of quantum phase transitions provides semi- quantitative predictions for neutron scattering measurements of spin-density-wave order in superconductors; theory also proposes a connection to STM experiments. V.Future experiments should search for SC+SDW to SC quantum transition driven by a magnetic field.