Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 l-Monotone Convex polygons are easy to triangulate. Unfortunately the partition.

Slides:



Advertisements
Similar presentations
Order-k Voronoi Diagram in the Plane
Advertisements

Polygon Triangulation
Advanced Topics in Algorithms and Data Structures Lecture 7.2, page 1 Merging two upper hulls Suppose, UH ( S 2 ) has s points given in an array according.
Brute-Force Triangulation
2/3/15CMPS 3130/6130 Computational Geometry1 CMPS 3130/6130 Computational Geometry Spring 2015 Triangulations and Guarding Art Galleries II Carola Wenk.
UNC Chapel Hill M. C. Lin Polygon Triangulation Chapter 3 of the Textbook Driving Applications –Guarding an Art Gallery –3D Morphing.
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann Triangulation (Naive)
9/12/06CS 6463: AT Computational Geometry1 CS 6463: AT Computational Geometry Fall 2006 Triangulations and Guarding Art Galleries II Carola Wenk.
The Divide-and-Conquer Strategy
Convex Hulls Computational Geometry, WS 2007/08 Lecture 2 – Supplementary Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Advanced Topics in Algorithms and Data Structures Lecture 7.1, page 1 An overview of lecture 7 An optimal parallel algorithm for the 2D convex hull problem,
A Recursive Algorithm for Calculating the Relative Convex Hull Gisela Klette AUT University Computing & Mathematical Sciences Auckland, New Zealand.
DEpthLAUNAY1 DEpthLAUNAY Manuel Abellanas Alfredo de las Vegas Facultad de Informática - UPM.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2010 Lecture 2 Polygon Partitioning Thursday,
Convex Hulls Computational Geometry, WS 2006/07 Lecture 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Delaunay Triangulation Computational Geometry, WS 2006/07 Lecture 11 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
1 Lecture 8: Voronoi Diagram Computational Geometry Prof. Dr. Th. Ottmann Voronoi Diagrams Definition Characteristics Size and Storage Construction Use.
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Polygon Triangulation Motivation: Guarding art galleries Art gallery theorem.
By Dor Lahav. Overview Straight Skeletons Convex Polygons Constrained Voronoi diagrams and Delauney triangulations.
Voronoi Diagrams Computational Geometry, WS 2006/07 Lecture 10 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Duality and Arrangements Computational Geometry, WS 2007/08 Lecture 6 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Lecture 10 : Delaunay Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Overview Motivation. Triangulation of Planar Point Sets. Definition.
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann Polygon Triangulation Motivation: Guarding art galleries Art gallery theorem.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2004 Lecture 2 Chapter 2: Polygon Partitioning.
Computational Geometry Algorithms Library Source: CGAL web page
Linear Programming Computational Geometry, WS 2007/08 Lecture 7, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Lecture 8 : Arrangements and Duality Computational Geometry Prof. Dr. Th. Ottmann 1 Duality and Arrangements Duality between lines and points Computing.
Point Location Computational Geometry, WS 2007/08 Lecture 5 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Polygon Triangulation Computational Geometry, WS 2007/08 Lecture 9 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Lecture 6: Point Location Computational Geometry Prof. Dr. Th. Ottmann 1 Point Location 1.Trapezoidal decomposition. 2.A search structure. 3.Randomized,
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2007 Lecture 2 Chapter 2: Polygon Partitioning.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2004 Chapter 4: 3D Convex Hulls Monday, 2/23/04.
Polygon Triangulation Computational Geometry, WS 2006/07 Lecture 8, Part 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Exersise 01 If A 1 is the foot of the bisector at A of the triangle ABC, and b, c the lengths of the sides CA, AB respectively, then A 1 = (Bb + Cc)/(b.
Art Gallery Theorem Computational Geometry, WS 2006/07 Lecture 8, Part 1 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Duality and Arrangements Computational Geometry, WS 2006/07 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
UMass Lowell Computer Science Advanced Algorithms Computational Geometry Prof. Karen Daniels Spring, 2001 Lecture 2 Chapter 2: Polygon Partitioning.
Brute-Force Triangulation
Exploring Solids. What is a Polyhedron? Polyhedrons Non-Polyhedrons.
9-4 Geometry in Three Dimensions  Simple Closed Surfaces  Regular Polyhedra  Cylinders and Cones.
12.3 Surface Area of a Pyramids and Cones Slant Height ( l )
9/7/06CS 6463: AT Computational Geometry1 CS 6463: AT Computational Geometry Fall 2006 Triangulations and Guarding Art Galleries Carola Wenk.
Triangulating a monotone polygon
Vertex – A point at which two or more edges meet Edge – A line segment at which two faces intersect Face – A flat surface Vertices, Edges, Faces.
5 -1 Chapter 5 The Divide-and-Conquer Strategy A simple example finding the maximum of a set S of n numbers.
Geometry B Section 12.3 Surface Area of Pyramids and Cones.
C o m p u t i n g C O N V E X H U L L S. Presentation Outline 2D Convex Hulls –Definitions and Properties –Approaches: Brute Force Gift Wrapping QuickHull.
Polyhedron Platonic Solids Cross Section
MA912G11 CHAPTER 1-3 DISTANCE FORMULA CHAPTER 1-3 MIDPOINT FORMULA.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Chapter Area, Pythagorean Theorem, and Volume 14 Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
1 11. Polygons Polygons 2D polygons ( 다각형 ) –Polygon sides are all straight lines lying in the same plane 3D polyhedra ( 다면체 )  chap. 12 –Polyhedra.
12.1 Exploring Solids.
1/29/15CMPS 3130/6130 Computational Geometry1 CMPS 3130/6130 Computational Geometry Spring 2015 Triangulations and Guarding Art Galleries Carola Wenk.
Polygon Definition Bounded by a closed circuit of straight-line segment. Term Edge : straight line segment Vertices : points.
Geometry Sections 5.1 and 5.2 Midsegment Theorem Use Perpendicular Bisectors.
Section 12-1 Exploring Solids. Polyhedron Three dimensional closed figure formed by joining three or more polygons at their side. Plural: polyhedra.
9/8/10CS 6463: AT Computational Geometry1 CS 6463: AT Computational Geometry Fall 2010 Triangulations and Guarding Art Galleries Carola Wenk.
Polygon Triangulation
CMPS 3130/6130 Computational Geometry Spring 2017
3. Polygon Triangulation
Goal 1: Using Properties of Polyhedra Goal 2: Using Euler’s Theorem
Polyhedra and Prisms.
Introduction to Spatial Computing CSE 555
Query Processing in Databases Dr. M. Gavrilova
Computational Geometry 2
10.1 Vocab Day 1 Grab a notes page from the back under Geometry on Wednesday Have notebook and homework out.
Vertical Angles Vertical angles are across from each other and are created by intersecting lines.
14 Chapter Area, Pythagorean Theorem, and Volume
Presentation transcript:

Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 l-Monotone Convex polygons are easy to triangulate. Unfortunately the partition into convex parts is just as difficult as the triangulation. l-monotone l P A simple polygon is called monotone w.r.t. a line l if for any line l´ perpendicular to l the intersection of the polygon with l´ is connected (y-monotone, if l = y-Axis). Observation: P is y-monotone.

Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 2 Two steps for triangulation 1. Divide P into y-monotone parts P 1,...,P k 2. Triangulate P 1,...,P k

Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 3 Split and Merge Vertices = start vertex = end vertex = regular vertex = split vertex = merge vertex

Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 4 Five Types of Vertices = start vertex = end vertex = regular vertex = split vertex = merge vertex

Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 5 Theorem A simple polygon with n vertices can be partitioned into y-monotone polygons in O(n log n) time with an algorithm that uses O(n) storage.

Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 6 Triangulation of y-monotone Polygon Idea: Fan so long build to convexity hurts alternation from right and left side not yet triangulated Implementation: Scan-line uses stack as data structure Case 1: Page overflowsCase 2: resembles page popped pushed

Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 7 Example a b c d e fh i jk l m n o p q r s t u v w x Batches : ba c : ba  ca d : ca  dc e : dc  ed g

Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 8 a b c d e f g h i j

Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 9 Implementation 1.S.push(u 1 ), S.push(u 2 ) 2. for j = 3,...,n-1 3. if (side(u j )  side(S.top)) 4. while (S   ) v = S.pop, diag(u j,v) 5. S.push(u j-1 ) 6. S.push(u j ) 7. else 8. while (diag(S.top, u j ) in P) 9. diag(S.top, u j ) 10. S.pop 11. S.push(last) 12. S.push(u j ) ujuj ujuj Theorem: time O(n) Proof: number of pops < number of pushes

Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 10 Theorem Theorem: A strictly y-monotone polygon with n vertices can be triangulated in O(n) time. Theorem: A simple polygon with n vertices can be triangulated in O(n log n) with an algorithm that uses O(n) storage. Theorem: A planar subdivision with n vertices in total can be triangulated in O(n log n) time with an algorithm that uses O(n) storage.

Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 11 Computational Geometry Algorithms Library Kernel 2D/3D point, vector, direction, segment, ray, line, dD point, triangle, bounding box,iso-rectangle, circle, plane, tetrahedron, predicates, affine transformations, intersection and distance calculation Basic Library half edge data structure, topological map, planar map, polyhedron, Boolean operations on polygons, planar map overlay, triangulation, Delauney triangulation, 2D/3D convex hull, and 2D extreme points, smallest enclosing circle/sphere and ellipse, maximum inscribed k-gon, and other optimizations, range tree, segment tree, kD tree