Institute for Experimental Mathematics Ellernstrasse 29 45326 Essen - Germany Pulse Position Access Codes A.J. Han Vinck.

Slides:



Advertisements
Similar presentations
Information theory Multi-user information theory A.J. Han Vinck Essen, 2004.
Advertisements

1 UWB (Ultra Wideband) Communication System Umut Akyol Haris Kremo Ahmed Turk John Youssef.
Digital transmission over a fading channel Narrowband system (introduction) Wideband TDMA (introduction) Wideband DS-CDMA (introduction) Rake receiver.
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
Cellular Communications
King Fahd University of Petroleum &Minerals Electrical Engineering Department EE-400 presentation CDMA systems Done By: Ibrahim Al-Dosari Mohammad.
RAKE Receiver Marcel Bautista February 12, Propagation of Tx Signal.
Coding for the Correction of Synchronization Errors ASJ Helberg CUHK Oct 2010.
Digital Communications I: Modulation and Coding Course Term 3 – 2008 Catharina Logothetis Lecture 2.
Ultra-Wideband Part II David Yee. Overview a.k.a. impulse radio because it sends pulses of tens of picoseconds( ) to nanoseconds (10 -9 ) Duty cycle.
Institute for Experimental Mathematics Ellernstrasse Essen - Germany packet transmission A.J. Han Vinck January 19, 2010.
Institute for Experimental Mathematics Ellernstrasse Essen - Germany Coding for a Terrible Channel A.J. Han Vinck July 3, 2005 COST 289.
1 CMPT 371 Data Communications and Networking Spread Spectrum.
Digital Communications I: Modulation and Coding Course Spring Jeffrey N. Denenberg Lecture 4: BandPass Modulation/Demodulation.
Digital Data Communications Techniques Updated: 2/9/2009.
Communication Systems
Ger man Aerospace Center Gothenburg, April, 2007 Coding Schemes for Crisscross Error Patterns Simon Plass, Gerd Richter, and A.J. Han Vinck.
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 12 Feb. 24 nd, 2014.
Digital Communication Symbol Modulated Carrier RX Symbol Decision Binary Bytes D/A Recovered Analog Binary Bytes Symbol State Modulation A/D Analog Source.
1/26 Chapter 6 Digital Data Communication Techniques.
Spread Spectrum Techniques
Usage of OFDM in a wideband fading channel OFDM signal structure Subcarrier modulation and coding Signals in frequency and time domain Inter-carrier interference.
林茂昭 教授 台大電機系 個人專長 錯誤更正碼 數位通訊
Modulation, Demodulation and Coding Course
ECE 4371, Fall, 2014 Introduction to Telecommunication Engineering/Telecommunication Laboratory Zhu Han Department of Electrical and Computer Engineering.
King Fahd University of Petroleum & Minerals  Electrical Engineering Department EE 578 Simulation of Wireless Systems Code Division Multiple Access Transmission.
DIGITAL COMMUNICATION Error - Correction A.J. Han Vinck.
Institute for Experimental Mathematics Ellernstrasse Essen - Germany DATA COMMUNICATION 2-dimensional transmission A.J. Han Vinck May 1, 2003.
Digital Communication I: Modulation and Coding Course
Institute for Experimental Mathematics Ellernstrasse Essen - Germany Data communication line codes and constrained sequences A.J. Han Vinck Revised.
CELLULAR COMMUNICATIONS 4. Modulation. Modulation  Radio signals can be used to carry information  Audio, data, video  Information is used to modify.
Information theory in the Modern Information Society A.J. Han Vinck University of Duisburg/Essen January 2003
1 Introduction to. 2 Contents: DEFINITION OF SPREAD SPECTRUM ( SS ) CHARACTERISTICS OF SPREAD SPECTRUM BASIC PRINCIPLES OF DIRECT SEQUENCE SPREAD SPECTRUM.
Digital transmission over a fading channel Narrowband system (introduction) Wideband TDMA (introduction) Wideband DS-CDMA (introduction) Rake receiver.
Supervisor: Supervisor: Dr. Ahmed Masri Dr. Ahmed Masri Prepared by: Prepared by: 1. Aya Hamarsheh 1. Aya Hamarsheh 2. Safaa Hamdan 2. Safaa Hamdan Novel.
Institute for Experimental Mathematics Ellernstrasse Essen - Germany On STORAGE Systems A.J. Han Vinck January 2011.
Institute for Experimental Mathematics Ellernstrasse Essen - Germany On STORAGE Systems A.J. Han Vinck June 2004.
A Power Independent Detection (PID) Method for Ultra Wide Band Impulse Radio Networks Alaeddine EL-FAWAL Joint work with Jean-Yves Le Boudec UWB4SN 2005:
ERROR CONTROL CODING Basic concepts Classes of codes: Block Codes
CENG 5931 GNU Radio Instructor:Dr.Collins Presented by Geetha Paturi ( )
Introduction to Data Communication: the discrete channel model A.J. Han Vinck University of Essen April 2005.
Institute for Experimental Mathematics Ellernstrasse Essen - Germany Data communication signatures A.J. Han Vinck July 29, 2004.
Week 7 Lecture 1+2 Digital Communications System Architecture + Signals basics.
Information theory Multi-user information theory Part 7: A special matrix application A.J. Han Vinck Essen, 2002.
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
CELLULAR COMMUNICATIONS MIDTERM REVIEW. Representing Oscillations   w is angular frequency    Need two variables to represent a state  Use a single.
Digital Communications Chapeter 3. Baseband Demodulation/Detection Signal Processing Lab.
ECE 4710: Lecture #13 1 Bit Synchronization  Synchronization signals are clock-like signals necessary in Rx (or repeater) for detection (or regeneration)
Digital Modulation Technique
Combined Linear & Constant Envelope Modulation
802.11b PHY Wireless LANs Page 1 of 23 IEEE b WLAN Physical Layer Svetozar Broussev 16-Feb-2005.
COMMUNICATION SYSTEM EECB353 Chapter 7 Part III MULTIPLE ACCESS Intan Shafinaz Mustafa Dept of Electrical Engineering Universiti Tenaga Nasional
Constellation Diagram
Digital Communications I: Modulation and Coding Course Term Catharina Logothetis Lecture 9.
Doc.: IEEE /1398r0 Submission November 2014 Slide 1 Shiwen He, Haiming Wang Preamble Sequence for IEEE aj (45GHz) Authors/contributors:
IEEE /121r1 Submission March 2003 Shaomin Mo, Panasonic -- PINTLSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Bandpass Modulation & Demodulation Detection
Code Division Multiple Access (CDMA) Transmission Technology
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
Lecture 12-13: Multi-access Aliazam Abbasfar. Outline.
Reed-Solomon Codes in Slow Frequency Hop Spread Spectrum Andrew Bolstad Iowa State University Advisor: Dr. John J. Komo Clemson University.
Error Control Coding. Purpose To detect and correct error(s) that is introduced during transmission of digital signal.
Institute for Experimental Mathematics Ellernstrasse Essen - Germany DATA COMMUNICATION introduction A.J. Han Vinck May 10, 2003.
Digital Communications Chapter 6. Channel Coding: Part 1
Digital transmission over a fading channel
Advanced Wireless Networks
DIRECT SEQUENCE SPREAD SPECTRUM WITH FREQUENCY HOPPING
doc.: IEEE <doc#>
Chapter 5: Third generation systems-Wideband Digital Modulation
Presentation transcript:

Institute for Experimental Mathematics Ellernstrasse Essen - Germany Pulse Position Access Codes A.J. Han Vinck

University Duisburg-Essendigital communications group A.J. Han Vinck content 1. Motivation UWB, frequency hopping (M-FSK) 2.Synchronized 3.PPM word format 4.Unsynchronized permutation codes, M-ary FSK 5.Codes with low corelation

University Duisburg-Essendigital communications group A.J. Han Vinck UWB signal emission spectrum mask ( GHz ) Signal bandwidth > 500 MHz

University Duisburg-Essendigital communications group A.J. Han Vinck Pulsed transmission UWB 1 0 binary Example: On-Off keying

University Duisburg-Essendigital communications group A.J. Han Vinck Pulsed transmission UWB 0 1 Nominal pulse position < nS PPM

University Duisburg-Essendigital communications group A.J. Han Vinck

University Duisburg-Essendigital communications group A.J. Han Vinck Time-Frequency /Code division  Time-frequency inefficient, but easy Code division efficient, but complex signature 0 1

University Duisburg-Essendigital communications group A.J. Han Vinck Binary access model  tr 1 tr 2 tr T rec 1 rec 2 rec T OR We want: „Uncoordinated and Random Access“

University Duisburg-Essendigital communications group A.J. Han Vinck (sync) Binary access model (cont‘d) In Out OR

University Duisburg-Essendigital communications group A.J. Han Vinck Maximum throughput Channel per user Maximum SUM throughput = 0.69 bits/channel use Compare ALOHA: 0.36 interference

University Duisburg-Essendigital communications group A.J. Han Vinck Superimposed codes  T code words should not produce a valid code word n N T words Valid word ?  n  ? Transmit signature:= 1 Transmit no signature := 0

University Duisburg-Essendigital communications group A.J. Han Vinck bounds Lower bound: for large N: superimposed signatures exist s.t. T log 2 N < n < 3 T 2 log 2 N Obvious for T out of N items # combinations

University Duisburg-Essendigital communications group A.J. Han Vinck Example: T  2, n = 9, N = 12 Usersignature R = 2/9 TDMA gives R = 2/12 Example: = x OR y ?

University Duisburg-Essendigital communications group A.J. Han Vinck For PPM: make access model M-ary  tr 1 tr 2 tr T rec 1 rec 2 rec T OR

University Duisburg-Essendigital communications group A.J. Han Vinck M-ary Frequency hopping f t Symbol timeHopping period Different hopping patterns (signatures) 10 M frequencies

University Duisburg-Essendigital communications group A.J. Han Vinck

University Duisburg-Essendigital communications group A.J. Han Vinck Maximum throughput Normalized SUM throughput (M-1)/M 0.69 bits/channel use Hence: PPM does not reduce efficiency! -”On the Capacity of the Asynchronous T-User M-frequency noislesss Multiple Access Channel” IEEE Trans. on Information Theory, pp , November (A.J. Han Vinck and Jeroen Keuning)

University Duisburg-Essendigital communications group A.J. Han Vinck Low density signaling - Note on ``On the Asymptotic Capacity of a Multiple-Access Channel'' by L. Wilhelmsson and K. Sh. Zigangirov, Probl. Peredachi Inf., 2000, vol. 36, no. 1, pp , Gober, P. and Han Vinck, A.J.,[Probl. Inf. Trans. (Engl. Transl.), 2000, vol. 36, no. 1, pp

University Duisburg-Essendigital communications group A.J. Han Vinck Example 2 users may transmit 1 bit of info at the same time User or 222 User or 222 User or 222 User or 222 Sum rate = 2/6 R TDMA = 2/8 Example: receive { (1), (1,2), 2 } =?

University Duisburg-Essendigital communications group A.J. Han Vinck M-ary Superimposed codes  T code words should not produce a valid code word n N M-1 words Valid word T log 2 N  nM  3T 2 log 2 N n = 3 Transmit signature:= 1 Transmit no signature := 0

University Duisburg-Essendigital communications group A.J. Han Vinck Example: general construction N M N  M(M-1) -“On Superimposed Codes,” in Numbers, Information and Complexity, Ingo Althöfer, Ning Cai, Gunter Dueck, Levon Khachatrian,Mark S. Pinsker, Andras Sarkozy, Ingo Wegener and Zhen Zhang (eds.), Kluwer Academic Publishers, February 2000, pp A.J. Han Vinck and Samwel Martirosyan.

University Duisburg-Essendigital communications group A.J. Han Vinck M-ary Error Correcting Codes minimum distance d min = maximum number of agreements No „overlap“ if T ( n - d min ) < n For M-ary RS codes (n,k,d = n-k+1 ) R superimposed = T/nM R TDMA = T/M k

University Duisburg-Essendigital communications group A.J. Han Vinck examples T = 3, M = 9; RS-code ( n, k, d ) = (7,3,5) N = 9 3 T ( n - d min ) = 3 (7 – 5) < 7 ! T = 3, M = 9; RS-code ( n, k, d ) = (4,2,3) N = 9 2 T ( n - d min ) = 3 (4 - 3) < 4 !

University Duisburg-Essendigital communications group A.J. Han Vinck Condition: sufficient but not necessary Example: T = 2; n = 4; d min = T(n-d) = 2(4 – 2) = 4 = n !

University Duisburg-Essendigital communications group A.J. Han Vinck Superimposed codes summary - Construction hard - Must be in sync - More than T users give errors - can be used as protocol sequences in collision channels - better than TDMA for N = 1024, T < 6

University Duisburg-Essendigital communications group A.J. Han Vinck Permutation codes for access Properties:minimum distance d min Signatures: length M M different symbols Examples: d min = d min =

University Duisburg-Essendigital communications group A.J. Han Vinck properties Example: M = 3; d min = 2; |C| = 6 In general cardinality: Reseach challenge: when equality?

University Duisburg-Essendigital communications group A.J. Han Vinck Interference property For minimum distance d min = M-1 difference |C| = M(M-1) Maximum interference = M - d min = 1 agreement CONCLUSION: up to M-1 users uniquely detectable always one unique position left

University Duisburg-Essendigital communications group A.J. Han Vinck Envelope detection 1 Envelope detection 2 Envelope detection M Threshold 1 Threshold 2 Threshold M > = 1 < = 0 > = 1 < = 0 > = 1 < = 0 Non-coherent detector structure in     

University Duisburg-Essendigital communications group A.J. Han Vinck Coded Modulation for Power Line Communications”, AEÜ Journal, 2000, pp , Jan 2000.

University Duisburg-Essendigital communications group A.J. Han Vinck

University Duisburg-Essendigital communications group A.J. Han Vinck M code words per user M code words M-1 users; T active; d min = M-1 d min = M  n  M

University Duisburg-Essendigital communications group A.J. Han Vinck Example: M = users; <3 active; d min = 2 n - d min = 1 R superimposed = 2/9 R TDMA = 2log 2 3/18 User 1: or { ( (1,0), 2, (1,0) } = ?

University Duisburg-Essendigital communications group A.J. Han Vinck Example M = users;  2 active; d min = 2; n - d min = 1 R superimposed = 2log 2 5/15 R TDMA = 2log 2 5/20 Codewords for user 4

University Duisburg-Essendigital communications group A.J. Han Vinck

University Duisburg-Essendigital communications group A.J. Han Vinck example

University Duisburg-Essendigital communications group A.J. Han Vinck

University Duisburg-Essendigital communications group A.J. Han Vinck

University Duisburg-Essendigital communications group A.J. Han Vinck Alternatives: M-ary Prime code Symbol i 1  i  M pulse at position i Example: permutation code + extension

University Duisburg-Essendigital communications group A.J. Han Vinck Prime Code properties Permutation code has minimum distance M-1 i.e. Interference = 1 Cardinality permutation code  M (M-1) + extension M Cardinality PRIME code  M 2 BAD AUTO- and CROSS-CORRELATION

University Duisburg-Essendigital communications group A.J. Han Vinck Non-symbol-synchronized User A (Auto)-Correlation = 2 User B (Cross)-Correlation = 2

University Duisburg-Essendigital communications group A.J. Han Vinck „Optical“ Orthogonal Codes: definition Property: x, y  {0, 1} AUTO CORRELATION CROSS CORRELATION x x y y x xshifted cross

University Duisburg-Essendigital communications group A.J. Han Vinck Important properties (for code construction) 1) All intervals between two ones must be different  = 1,  = 2,  = 3, 4 C(7,2,1) cross 2) Cyclic shifts give cross correlation > 1 they are not in the OOC

University Duisburg-Essendigital communications group A.J. Han Vinck autocorrelation signature x side peak > 1 impossible correlation  2 w = 3

University Duisburg-Essendigital communications group A.J. Han Vinck Cross correlation signature x * * * 1 * * * signature y * * * 1 * * * * * * 1 * * ? Suppose that ? = 1 then cross correlation with x = 2 y contains same interval as x  impossible

University Duisburg-Essendigital communications group A.J. Han Vinck conclusion Signature in sync: peak of size w w must be large All other situations contributions  1 What about code parameters?

University Duisburg-Essendigital communications group A.J. Han Vinck Code size for code words of length n # different intervals < n must be different otherwise correlation  2 For weight w vector: w(w-1) intervals |C(n,w,1)|  (n-1)/w(w-1) ( = 6/6 = 1) 1, 2, 3, 4, 5, 6

University Duisburg-Essendigital communications group A.J. Han Vinck Example C(7,2,1)  = 1,  = 2,  = 3, 4

University Duisburg-Essendigital communications group A.J. Han Vinck Construction (n,w,1)-OOC IDEA: IDEA: starting word w=3, length n 0 =9 1 2 Blow up intervals *** 4 5 Parameter *** m = *** Proof OOC property: Proof OOC property: all intervals are different  correlation =1

University Duisburg-Essendigital communications group A.J. Han Vinck Problem in construction 1.find good starting word 2.Find small value for blow up parameter -“A Construction for optical Orthogonal Codes with Correlation 1,” IEICE Trans. Fundamentals, Vol E85-A, No. 1, January 2002, pp , Samwel Martirosyan and A.J. Han Vinck,

University Duisburg-Essendigital communications group A.J. Han Vinck result 1. Code construction: |C(n,w,1)| > 2n/(w-1)w 3 2. Using difference sets as starting word: Code construction|C(n,w,1)| > 2n/(w-1)w 2 problem: existance of difference sets Reference: IEICE, January 2002 Upperbound: |C(n,w,1)|  (n-1)/w(w-1)

University Duisburg-Essendigital communications group A.J. Han Vinck Difference set A difference set is : an ( n = w(w-1) + 1, w, 1 ) – OOC with a single code vector X 0 Example: n = 7; w =

University Duisburg-Essendigital communications group A.J. Han Vinck references Mathematical design solutions:  projective geometry ( Chung, Salehi, Wei, Kumar)  balanced incomplete block designs (R.N.M. Wilson)  difference sets ( Jungnickel) Japanese reference: Tomoaki Ohtsuki ( Univ. of Tokyo)

University Duisburg-Essendigital communications group A.J. Han Vinck Transmission of 1 bit/user User 1: or User 2: or (OOO) User 3: or users can lead to wrong decision at sample moment +: simple transmitter -: not balanced

University Duisburg-Essendigital communications group A.J. Han Vinck Multi user Communication model for UWB 1 or 0 * +3 = or -3 transmit receive Signature 1 Signature 0 Simple receiver structure!

University Duisburg-Essendigital communications group A.J. Han Vinck Transmitter / receiver (ref: Tomoaki Ohtsuki) Data selector data Tunable delay line impulse sequence encoder splitter hard limiter correlator - + encoder decoder

University Duisburg-Essendigital communications group A.J. Han Vinck 2 problems User 1: or User 2: or correlation 2 ! User 3: or | correlation 2 !

University Duisburg-Essendigital communications group A.J. Han Vinck Super Optical Orthogonal Codes AUTO CORRELATION CROSS CORRELATION SUPER-CROSS CORRELATION

University Duisburg-Essendigital communications group A.J. Han Vinck note or 0 A sequence might look like: y 0 y y 0 0    For situation A: or another For situation C: A sequence might look like: y y‘ y‘ y‘ y   

University Duisburg-Essendigital communications group A.J. Han Vinck Super-cross correlation y y x y y‘ x  1 Y‘ could be shifted version

University Duisburg-Essendigital communications group A.J. Han Vinck Property shift sensitive is a S-OOC shifted code is not a S-OOC

University Duisburg-Essendigital communications group A.J. Han Vinck conclusions Optical Orthogonal Codes have nice correlation properties Super Optical Orthogonal Codes additional constraint: less code words

University Duisburg-Essendigital communications group A.J. Han Vinck conclusions We showed: - different signalling methods - problems with OOC code design Future: performance calculations

University Duisburg-Essendigital communications group A.J. Han Vinck Application optical Multi-access All optical transmitter/ receiver is fast Use signature of OOC to transmit information

University Duisburg-Essendigital communications group A.J. Han Vinck Other users noise OPTICAL matched filter TRANSMITTER/RECEIVER signature

University Duisburg-Essendigital communications group A.J. Han Vinck why Collect all the ones in the signature: delay delay delay 3 weight w

University Duisburg-Essendigital communications group A.J. Han Vinck We want: 1.weight w large high peak 2.side peaks  1 for other signatures cross correlation  1