1 Pertemuan 15 Pendugaan Parameter Nilai Tengah Matakuliah: I0134 – Metode Statistika Tahun: 2007.

Slides:



Advertisements
Similar presentations
Pendugaan Parameter Nilai Tengah Pertemuan 13 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Advertisements

Analisis Varians/Ragam Klasifikasi Dua Arah Pertemuan 18 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 11 Matakuliah: I0014 / Biostatistika Tahun: 2005 Versi: V1 / R1 Pengujian Hipotesis (I)
Pendugaan Parameter Beda Nilai Tengah Pertemuan 16 Matakuliah: I0134/Metode Statistika Tahun: 2007.
Pengujian Parameter Regresi Ganda Pertemuan 22 Matakuliah: L0104/Statistika Psikologi Tahun: 2008.
Pengujian Hipotesis Nilai Tengah Pertemuan 15 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Regresi dan Korelasi Linear Pertemuan 19
Uji Tanda dan Peringkat Bertanda Wilcoxon Pertemuan 25 Matakuliah: Statistika Psikologi Tahun: 2008.
Uji Kebaikan Suai (Uji Kecocokan) Pertemuan 23
Chapter 10 Statistical Inference About Means and Proportions With Two Populations Estimation of the Difference between the Means of Two Populations:
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 Chapter 10 Comparisons Involving Means  1 =  2 ? ANOVA Estimation of the Difference between the Means of Two Populations: Independent Samples Hypothesis.
1 1 Slide MA4704 Problem solving 4 Statistical Inference About Means and Proportions With Two Populations n Inferences About the Difference Between Two.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
Chapter 10 Comparisons Involving Means Part A Estimation of the Difference between the Means of Two Populations: Independent Samples Hypothesis Tests about.
Chapter 10 Comparisons Involving Means
Business and Economics 9th Edition
Sampling Distribution of If and are normally distributed and samples 1 and 2 are independent, their difference is.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Statistical Inference About Means and Proportions With Two Populations
1 1 © 2009 Econ-2030(Dr. Tadesse) Chapter 10 Comparisons Involving Means n Inferences About the Difference Between Two Population Means: when  1 and 
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Interval Estimation Interval estimation of a population mean: Large Sample case Interval estimation of a population mean: Small sample case.
Chapter 10b Hypothesis Tests About the Difference Between the Means of Two Populations: Independent Samples, Small-Sample CaseHypothesis Tests About the.
1 Pertemuan 18 Pembandingan Dua Populasi-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 06 Sebaran Penarikan Contoh Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
OMS 201 Review. Range The range of a data set is the difference between the largest and smallest data values. It is the simplest measure of dispersion.
1 Pertemuan 09 Pengujian Hipotesis 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 10 Analisis Ragam (Varians) - 1 Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 08 Pengujian Hipotesis 1 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 1 Slide © 2003 South-Western /Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Korelasi dan Regresi Linear Sederhana Pertemuan 25
1 Pertemuan 11 Sampling dan Sebaran Sampling-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 13 Regresi Linear dan Korelasi Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
1 1 Slide Slides by John Loucks St. Edward’s University.
1 1 Slide © 2005 Thomson/South-Western Chapter 10 Statistical Inference About Means and Proportions With Two Populations n Inferences About the Difference.
1 1 Slide Chapter 8 Interval Estimation n Interval Estimation of a Population Mean: Large-Sample Case Large-Sample Case n Interval Estimation of a Population.
1 1 Slide © 2003 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
[ ]  Chapter 8 Interval Estimation n Interval Estimation of a Population Mean: Large-Sample Case Large-Sample.
Interval Estimation  Interval Estimation of a Population Mean: Large-Sample Case  Interval Estimation of a Population Mean: Small-Sample Case  Determining.
1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Perbandingan dua populasi Pertemuan 8 Matakuliah: D Statistika dan Aplikasinya Tahun: 2010.
Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
Sampling Distribution of If and are normally distributed and samples 1 and 2 are independent, their difference is.
1 Pertemuan 13 Selang Kepercayaan-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 24 Uji Kebaikan Suai Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 Pertemuan 19 Analisis Varians Klasifikasi Satu Arah Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Rancangan Acak Lengkap ( Analisis Varians Klasifikasi Satu Arah) Pertemuan 16 Matakuliah: I0184 – Teori Statistika II Tahun: 2009.
PENGUJIAN HIPOTESIS 1 Pertemuan 9
Pertemuan 17 Analisis Varians Klasifikasi Satu Arah
Pertemuan 01 Data dan Statistika
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
St. Edward’s University
Pertemuan 22 Analisis Varians Untuk Regresi
Pengujian Parameter Regresi dan Korelasi Pertemuan 20
Pertemuan 17 Pengujian Hipotesis
Pertemuan 13 Pendugaan Parameter Nilai Tengah
Pertemuan 13 Sebaran Seragam dan Eksponensial
Pertemuan 18 Pengujian Hipotesis Lanjutan
Presentation transcript:

1 Pertemuan 15 Pendugaan Parameter Nilai Tengah Matakuliah: I0134 – Metode Statistika Tahun: 2007

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung pendugaan parameter nilai tengah satu atau dua populasi.

3 Outline Materi Penduigaan nilai tengah satu populasi Pendugaan beda dua nilai tengah sampel besar Pendugaan beda nilai tengah sampel kecil Pendugaan beda nilai tengah populasi tidak bebas

4 [ ]  Interval Estimation Interval Estimation of a Population Mean: Large-Sample Case Interval Estimation of a Population Mean: Small-Sample Case Determining the Sample Size Interval Estimation of a Population Proportion

5 Interval Estimate of a Population Mean: Large-Sample Case (n > 30) With  Known where: is the sample mean 1 -  is the confidence coefficient z  /2 is the z value providing an area of  /2 in the upper tail of the standard normal probability distribution  is the population standard deviation n is the sample size

6 Interval Estimate of a Population Mean: Large-Sample Case (n > 30) With  Unknown In most applications the value of the population standard deviation is unknown. We simply use the value of the sample standard deviation, s, as the point estimate of the population standard deviation.

7 Interval Estimation of a Population Mean: Small-Sample Case (n < 30) Population is Not Normally Distributed The only option is to increase the sample size to n > 30 and use the large-sample interval-estimation procedures. Population is Normally Distributed and  is Known The large-sample interval-estimation procedure can be used. Population is Normally Distributed and  is Unknown The appropriate interval estimate is based on a probability distribution known as the t distribution.

8 Interval Estimation of a Population Mean: Small-Sample Case (n < 30) with  Unknown Interval Estimate where 1 -  = the confidence coefficient t  /2 = the t value providing an area of  /2 in the upper tail of a t distribution with n - 1 degrees of freedom s = the sample standard deviation

9 Interval Estimate with  1 and  2 Known where: 1 -  is the confidence coefficient Interval Estimate with  1 and  2 Unknown where: Interval Estimate of  1 -  2 : Large-Sample Case (n 1 > 30 and n 2 > 30)

10 Point Estimator of the Difference Between the Means of Two Populations Population 1 Par, Inc. Golf Balls  1 = mean driving distance of Par distance of Par golf balls Population 1 Par, Inc. Golf Balls  1 = mean driving distance of Par distance of Par golf balls Population 2 Rap, Ltd. Golf Balls  2 = mean driving distance of Rap distance of Rap golf balls Population 2 Rap, Ltd. Golf Balls  2 = mean driving distance of Rap distance of Rap golf balls m 1 –  2 = difference between the mean distances the mean distances Simple random sample Simple random sample of n 1 Par golf balls of n 1 Par golf balls x 1 = sample mean distance for sample of Par golf ball Simple random sample Simple random sample of n 1 Par golf balls of n 1 Par golf balls x 1 = sample mean distance for sample of Par golf ball Simple random sample Simple random sample of n 2 Rap golf balls of n 2 Rap golf balls x 2 = sample mean distance for sample of Rap golf ball Simple random sample Simple random sample of n 2 Rap golf balls of n 2 Rap golf balls x 2 = sample mean distance for sample of Rap golf ball x 1 - x 2 = Point Estimate of m 1 –  2

11 Interval Estimate of  1 -  2 : Small-Sample Case (n 1 < 30 and/or n 2 < 30) Interval Estimate with  2 Known where:

12 Interval Estimate of  1 -  2 : Small-Sample Case (n 1 < 30 and/or n 2 < 30) Interval Estimate with  2 Unknown where:

13 Point Estimate of the Difference Between Two Population Means  1 = mean miles-per-gallon for the population of M cars  2 = mean miles-per-gallon for the population of J cars Point estimate of  1 -  2 = = = 2.5 mpg. Contoh Soal: Specific Motors

14 95% Confidence Interval Estimate of the Difference Between Two Population Means: Small-Sample Case = or.3 to 4.7 miles per gallon. We are 95% confident that the difference between the mean mpg ratings of the two car types is from.3 to 4.7 mpg (with the M car having the higher mpg). Contoh Soal: Specific Motors

15 Inference About the Difference Between the Means of Two Populations: Matched Samples With a matched-sample design each sampled item provides a pair of data values. The matched-sample design can be referred to as blocking. This design often leads to a smaller sampling error than the independent-sample design because variation between sampled items is eliminated as a source of sampling error.

16 Delivery Time (Hours) District OfficeUPX INTEX Difference Seattle Los Angeles Boston Cleveland New York Houston Atlanta St. Louis Milwaukee Denver Contoh Soal: Express Deliveries

17 Inference About the Difference Between the Means of Two Populations: Matched Samples Let  d = the mean of the difference values for the two delivery services for the population of district offices –Hypotheses H 0 :  d = 0, H a :  d  –Rejection Rule Assuming the population of difference values is approximately normally distributed, the t distribution with n - 1 degrees of freedom applies. With  =.05, t.025 = (9 degrees of freedom). Reject H 0 if t Contoh Soal: Express Deliveries

18 Inference About the Difference Between the Means of Two Populations: Matched Samples Conclusion Reject H 0. There is a significant difference between the mean delivery times for the two services. Contoh Soal: Express Deliveries

19 Selamat Belajar Semoga Sukses.