Motivation and Outline

Slides:



Advertisements
Similar presentations
Chapter 5: Introduction to Information Retrieval
Advertisements

Modern information retrieval Modelling. Introduction IR systems usually adopt index terms to process queries IR systems usually adopt index terms to process.
Multimedia Database Systems
Basic IR: Modeling Basic IR Task: Slightly more complex:
Modern Information Retrieval Chapter 1: Introduction
Modern Information Retrieval by R. Baeza-Yates and B. Ribeiro-Neto
Web Search - Summer Term 2006 II. Information Retrieval (Basics Cont.)
IR Models: Overview, Boolean, and Vector
T.Sharon - A.Frank 1 Internet Resources Discovery (IRD) Classic Information Retrieval (IR)
ISP 433/533 Week 2 IR Models.
Database Management Systems, R. Ramakrishnan1 Computing Relevance, Similarity: The Vector Space Model Chapter 27, Part B Based on Larson and Hearst’s slides.
Multimedia and Text Indexing. Multimedia Data Management The need to query and analyze vast amounts of multimedia data (i.e., images, sound tracks, video.
Information Retrieval Modeling CS 652 Information Extraction and Integration.
T.Sharon - A.Frank 1 Internet Resources Discovery (IRD) IR Queries.
Information Retrieval Concerned with the: Representation of Storage of Organization of, and Access to Information items.
Ch 4: Information Retrieval and Text Mining
Modern Information Retrieval Chapter 2 Modeling. Can keywords be used to represent a document or a query? keywords as query and matching as query processing.
Chapter 2Modeling 資工 4B 陳建勳. Introduction.  Traditional information retrieval systems usually adopt index terms to index and retrieve documents.
1/22 --Are you getting s sent to class mailing list? (if not, send me ) Agenda: --Intro wrapup --Start on text retrieval Link du jour: vivisimo.com.
Modeling Modern Information Retrieval
IR Models: Latent Semantic Analysis. IR Model Taxonomy Non-Overlapping Lists Proximal Nodes Structured Models U s e r T a s k Set Theoretic Fuzzy Extended.
Vector Space Model CS 652 Information Extraction and Integration.
Modern Information Retrieval Chapter 2 Modeling. Can keywords be used to represent a document or a query? keywords as query and matching as query processing.
IR Models: Review Vector Model and Probabilistic.
Other IR Models Non-Overlapping Lists Proximal Nodes Structured Models Retrieval: Adhoc Filtering Browsing U s e r T a s k Classic Models boolean vector.
Recuperação de Informação. IR: representation, storage, organization of, and access to information items Emphasis is on the retrieval of information (not.
Chapter 5: Information Retrieval and Web Search
Information Retrieval: Foundation to Web Search Zachary G. Ives University of Pennsylvania CIS 455 / 555 – Internet and Web Systems August 13, 2015 Some.
 IR: representation, storage, organization of, and access to information items  Focus is on the user information need  User information need:  Find.
Modeling (Chap. 2) Modern Information Retrieval Spring 2000.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 32-33: Information Retrieval: Basic concepts and Model.
Modern Information Retrieval Computer engineering department Fall 2005.
Information Retrieval Introduction/Overview Material for these slides obtained from: Modern Information Retrieval by Ricardo Baeza-Yates and Berthier Ribeiro-Neto.
PrasadL2IRModels1 Models for IR Adapted from Lectures by Berthier Ribeiro-Neto (Brazil), Prabhakar Raghavan (Yahoo and Stanford) and Christopher Manning.
Information Retrieval Chapter 2: Modeling 2.1, 2.2, 2.3, 2.4, 2.5.1, 2.5.2, Slides provided by the author, modified by L N Cassel September 2003.
Information Retrieval Models - 1 Boolean. Introduction IR systems usually adopt index terms to process queries Index terms:  A keyword or group of selected.
IR Models J. H. Wang Mar. 11, The Retrieval Process User Interface Text Operations Query Operations Indexing Searching Ranking Index Text quer y.
Chapter 6: Information Retrieval and Web Search
1 Computing Relevance, Similarity: The Vector Space Model.
Introduction to Digital Libraries hussein suleman uct cs honours 2003.
CPSC 404 Laks V.S. Lakshmanan1 Computing Relevance, Similarity: The Vector Space Model Chapter 27, Part B Based on Larson and Hearst’s slides at UC-Berkeley.
Information Retrieval Model Aj. Khuanlux MitsophonsiriCS.426 INFORMATION RETRIEVAL.
CSCE 5300 Information Retrieval and Web Search Introduction to IR models and methods Instructor: Rada Mihalcea Class web page:
Information Retrieval CSE 8337 Spring 2005 Modeling Material for these slides obtained from: Modern Information Retrieval by Ricardo Baeza-Yates and Berthier.
1 University of Palestine Topics In CIS ITBS 3202 Ms. Eman Alajrami 2 nd Semester
Introduction to Information Retrieval Aj. Khuanlux MitsophonsiriCS.426 INFORMATION RETRIEVAL.
Information Retrieval CSE 8337 Spring 2007 Introduction/Overview Some Material for these slides obtained from: Modern Information Retrieval by Ricardo.
Recuperação de Informação Cap. 01: Introdução 21 de Fevereiro de 1999 Berthier Ribeiro-Neto.
Information Retrieval
The Boolean Model Simple model based on set theory
Information Retrieval and Web Search IR models: Boolean model Instructor: Rada Mihalcea Class web page:
C.Watterscsci64031 Classical IR Models. C.Watterscsci64032 Goal Hit set of relevant documents Ranked set Best match Answer.
Set Theoretic Models 1. IR Models Non-Overlapping Lists Proximal Nodes Structured Models Retrieval: Adhoc Filtering Browsing U s e r T a s k Classic Models.
Information Retrieval and Web Search Introduction to IR models and methods Rada Mihalcea (Some of the slides in this slide set come from IR courses taught.
Introduction n IR systems usually adopt index terms to process queries n Index term: u a keyword or group of selected words u any word (more general) n.
1 Boolean Model. 2 A document is represented as a set of keywords. Queries are Boolean expressions of keywords, connected by AND, OR, and NOT, including.
Information Retrieval Models School of Informatics Dept. of Library and Information Studies Dr. Miguel E. Ruiz.
Modern Information Retrieval
Information Retrieval
Representation of documents and queries
INFORMATION RETRIEVAL TECHNIQUES BY DR. ADNAN ABID
CSE 635 Multimedia Information Retrieval
4. Boolean and Vector Space Retrieval Models
Boolean and Vector Space Retrieval Models
Recuperação de Informação B
Recuperação de Informação B
Berlin Chen Department of Computer Science & Information Engineering
Recuperação de Informação
Information Retrieval and Web Design
Advanced information retrieval
Presentation transcript:

Motivation and Outline Background Definitions, etc. The Problem 100,000+ pages The Solution Ranking docs Vector space Extensions Relevance feedback, clustering, query expansion, etc.

Motivation IR: representation, storage, organization of, and access to information items Focus is on the user information need User information need: Find all docs containing information on college tennis teams which: (1) are maintained by a USA university and (2) participate in the NCAA tournament. Emphasis is on the retrieval of information (not data)

Motivation Data retrieval Information retrieval IR system: which docs contain a set of keywords? Well defined semantics a single erroneous object implies failure! Information retrieval information about a subject or topic semantics is frequently loose small errors are tolerated IR system: interpret contents of information items generate a ranking which reflects relevance notion of relevance is most important

Motivation IR at the center of the stage IR in the last 20 years: classification and categorization systems and languages user interfaces and visualization Still, area was seen as of narrow interest Advent of the Web changed this perception once and for all universal repository of knowledge free (low cost) universal access no central editorial board many problems though: IR seen as key to finding the solutions!

Basic Concepts The User Task Retrieval Browsing information or data purposeful Browsing glancing around F1; cars, Le Mans, France, tourism Retrieval Browsing Database

The Retrieval Process 4, 10 6, 7 5 8 2 User Interface Text Operations (stemming, noun phrase detection etc..) Query Operations (elaboration, relevance feedback Indexing Searching (hash tables etc.) Ranking (vector models ..) Index Text query user need user feedback ranked docs retrieved docs logical view inverted file DB Manager Module 4, 10 6, 7 5 8 2 Database

Measuring Performance tn Precision Proportion of selected items that are correct Recall Proportion of target items that were selected Precision-Recall curve Shows tradeoff fp tp fn System returned these Actual relevant docs Precision Recall

Precision/Recall Curves 11-point recall-precision curve Example: Suppose for a given query, 10 documents are relevant. Suppose when all documents are ranked in descending similarities, we have d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 d26 d27 d28 d29 d30 d31 … precision .1 1.0 recall .3

Precision Recall Curves… When evaluating the retrieval effectiveness of a text retrieval system or method, a large number of queries are used and their average 11-point recall-precision curve is plotted. Methods 1 and 2 are better than method 3. Method 1 is better than method 2 for high recalls. precision Method 1 Method 2 Method 3 recall

Query Models IR systems usually adopt index terms to process queries a keyword or group of selected words any word (more general) Stemming might be used: connect: connecting, connection, connections An inverted file is built for the chosen index terms

Introduction Docs Index Terms doc match Ranking Information Need query

Introduction Matching at index term level is quite imprecise No surprise that users get frequently unsatisfied Since most users have no training in query formation, problem is even worst Frequent dissatisfaction of Web users Issue of deciding relevance is critical for IR systems: ranking

Introduction A ranking is an ordering of the documents retrieved that (hopefully) reflects the relevance of the documents to the user query A ranking is based on fundamental premisses regarding the notion of relevance, such as: common sets of index terms sharing of weighted terms likelihood of relevance Each set of premisses leads to a distinct IR model

IR Models s e Adhoc r Filtering T a k Browsing Extended Boolean vector Set Theoretic Fuzzy Extended Boolean Classic Models boolean vector probabilistic Algebraic Generalized Vector Lat. Semantic Index Neural Networks U s e r T a k Retrieval: Adhoc Filtering Non-Overlapping Lists Proximal Nodes Structured Models Probabilistic Inference Network Belief Network Browsing Browsing Flat Structure Guided Hypertext

IR Models The IR model, the logical view of the docs, and the retrieval task are distinct aspects of the system

Retrieval: Ad Hoc x Filtering Ad hoc retrieval: Q1 Q2 Q3 Collection “Fixed Size” Q4 Q5

Retrieval: Ad Hoc x Filtering Docs Filtered for User 2 User 2 Profile User 1 Profile Docs for User 1 Documents Stream

Classic IR Models - Basic Concepts Each document represented by a set of representative keywords or index terms An index term is a document word useful for remembering the document main themes Usually, index terms are nouns because nouns have meaning by themselves However, search engines assume that all words are index terms (full text representation)

Generating keywords Logical view of the documents Accents spacing Noun groups Manual indexing Docs stopwords stemming structure structure Full text Index terms Stop-word elimination Noun phrase detection Stemming Generating index terms Improving quality of terms. Synonyms, co-occurence detection, latent semantic indexing..

Classic IR Models - Basic Concepts Not all terms are equally useful for representing the document contents: less frequent terms allow identifying a narrower set of documents The importance of the index terms is represented by weights associated to them Let ki be an index term dj be a document wij is a weight associated with (ki,dj) The weight wij quantifies the importance of the index term for describing the document contents

Classic IR Models - Basic Concepts Ki is an index term dj is a document t is the total number of docs K = (k1, k2, …, kt) is the set of all index terms wij >= 0 is a weight associated with (ki,dj) wij = 0 indicates that term does not belong to doc vec(dj) = (w1j, w2j, …, wtj) is a weighted vector associated with the document dj gi(vec(dj)) = wij is a function which returns the weight associated with pair (ki,dj)

The Boolean Model Simple model based on set theory Queries specified as boolean expressions precise semantics neat formalism q = ka  (kb  kc) Terms are either present or absent. Thus, wij  {0,1} Consider vec(qdnf) = (1,1,1)  (1,1,0)  (1,0,0) vec(qcc) = (1,1,0) is a conjunctive component

The Boolean Model q = ka  (kb  kc) (1,1,1) (1,0,0) (1,1,0) Ka Kb Kc q = ka  (kb  kc) sim(q,dj) = 1 if  vec(qcc) | (vec(qcc)  vec(qdnf))  (ki, gi(vec(dj)) = gi(vec(qcc))) 0 otherwise

Drawbacks of the Boolean Model Retrieval based on binary decision criteria with no notion of partial matching No ranking of the documents is provided (absence of a grading scale) Information need has to be translated into a Boolean expression which most users find awkward The Boolean queries formulated by the users are most often too simplistic As a consequence, the Boolean model frequently returns either too few or too many documents in response to a user query

The Vector Model Use of binary weights is too limiting Non-binary weights provide consideration for partial matches These term weights are used to compute a degree of similarity between a query and each document Ranked set of documents provides for better matching

The Vector Model Define: wij > 0 whenever ki  dj wiq >= 0 associated with the pair (ki,q) vec(dj) = (w1j, w2j, ..., wtj) vec(q) = (w1q, w2q, ..., wtq) To each term ki is associated a unitary vector vec(i) The unitary vectors vec(i) and vec(j) are assumed to be orthonormal (i.e., index terms are assumed to occur independently within the documents) The t unitary vectors vec(i) form an orthonormal basis for a t-dimensional space In this space, queries and documents are represented as weighted vectors

Document Vectors Documents are represented as “bags of words” Represented as vectors when used computationally A vector is like an array of floating point Has direction and magnitude Each vector holds a place for every term in the collection Therefore, most vectors are sparse

Vector Space Example a: System and human system engineering testing of EPS b: A survey of user opinion of computer system response time c: The EPS user interface management system d: Human machine interface for ABC computer applications e: Relation of user perceived response time to error measurement f: The generation of random, binary, ordered trees g: The intersection graph of paths in trees h: Graph minors IV: Widths of trees and well-quasi-ordering i: Graph minors: A survey

Document Vectors One location for each word. B C D E F G H I nova galaxy heat h’wood film role diet fur 10 5 3 5 10 10 8 7 9 10 5 10 10 9 10 5 7 9 6 10 2 8 7 5 1 3 “Nova” occurs 10 times in text A “Galaxy” occurs 5 times in text A “Heat” occurs 3 times in text A (Blank means 0 occurrences.)

Document Vectors One location for each word. B C D E F G H I nova galaxy heat h’wood film role diet fur 10 5 3 5 10 10 8 7 9 10 5 10 10 9 10 5 7 9 6 10 2 8 7 5 1 3 “Hollywood” occurs 7 times in text I “Film” occurs 5 times in text I “Diet” occurs 1 time in text I “Fur” occurs 3 times in text I

Document Vectors A B C D E F G H I Document ids A B C D E F G H I nova galaxy heat h’wood film role diet fur 10 5 3 5 10 10 8 7 9 10 5 10 10 9 10 5 7 9 6 10 2 8 7 5 1 3

We Can Plot the Vectors Star Diet Doc about movie stars Doc about astronomy Doc about mammal behavior Diet

Illustration from Jurafsky & Martin Documents in 3D Space Illustration from Jurafsky & Martin

Similarity Function (1) The similarity or closeness of a document d = ( w1, …, wi, …, wn ) with respect to a query q = ( q1, …, qi, …, qn ) is computed using a similarity function. Many similarity functions exist. Dot product function sim(q, d) = dot(q, d) = q1  w1 + … + qn  wn Example: Suppose d = (0.2, 0, 0.3, 1) and q = (0.75, 0.75, 0, 1), then sim(q, d) = 0.15 + 0 + 0 + 1 = 1.15

Similarity Function (2) Observations of the dot product function. Documents having more terms in common with a query tend to have higher similarities with the query. For terms that appear in both q and d, those with higher weights contribute more to sim(q, d) than those with lower weights. It favors long documents over short documents. The computed similarities have no clear upper bound.

A normalized similarity metric j dj  q i Sim(q,dj) = cos() = [vec(dj)  vec(q)] / |dj| * |q| = [ wij * wiq] / |dj| * |q| Since wij > 0 and wiq > 0, 0 <= sim(q,dj) <=1 A document is retrieved even if it matches the query terms only partially

Vector Space Example cont. interface user c b system a Transition out: We now return you to our regularly scheduled generals talk

Answering a Query Using Vector Space Represent query as vector Compute distances to all documents Rank according to distance Example “computer system”

The Vector Model Sim(q,dj) = [ wij * wiq] / |dj| * |q| How to compute the weights wij and wiq ? Simple keyword frequencies tend to favor common words E.g. Query: The Computer Tomography A good weight must take into account two effects: quantification of intra-document contents (similarity) tf factor, the term frequency within a document quantification of inter-documents separation (dissi-milarity) idf factor, the inverse document frequency wij = tf(i,j) * idf(i)

The Vector Model Let, A normalized tf factor is given by N be the total number of docs in the collection ni be the number of docs which contain ki freq(i,j) raw frequency of ki within dj A normalized tf factor is given by f(i,j) = freq(i,j) / max(freq(l,j)) where the maximum is computed over all terms which occur within the document dj The idf factor is computed as idf(i) = log (N/ni) the log is used to make the values of tf and idf comparable. It can also be interpreted as the amount of information associated with the term ki.

The Vector Model The best term-weighting schemes use weights which are give by wij = f(i,j) * log(N/ni) the strategy is called a tf-idf weighting scheme For the query term weights, a suggestion is wiq = (0.5 + [0.5 * freq(i,q) / max(freq(l,q)]) * log(N/ni) The vector model with tf-idf weights is a good ranking strategy with general collections The vector model is usually as good as the known ranking alternatives. It is also simple and fast to compute.

The Vector Model Advantages: Disadvantages: term-weighting improves quality of the answer set partial matching allows retrieval of docs that approximate the query conditions cosine ranking formula sorts documents according to degree of similarity to the query Disadvantages: assumes independence of index terms (??); not clear that this is bad though

The Vector Model: Example I k1 k2 k3

The Vector Model: Example II k1 k2 k3

The Vector Model: Example III k1 k2 k3