第四章 相關分析 (correlation analysis)

Slides:



Advertisements
Similar presentations
資料蒐集的方法(三):實驗法(實驗設計) (第七章)
Advertisements

1 生物計算期末作業 暨南大學資訊工程系 2003/05/13. 2 compare f1 f2  只比較兩個檔案 f1 與 f2 ,比完後將結果輸出。 compare directory  以兩兩比對的方式,比對一個目錄下所有檔案的相 似程度。  將相似度很高的檔案做成報表輸出,報表中至少要.
第二章 研究主題(研究題 目)與研究問題.
第五章 卡方檢定 5-1 卡方檢定 (X2 test) 5-2 適配度檢定 (good-of-fit test)
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Stata教學 第六講 變異數分析ANOVA ©Ming-chi Chen 社會統計.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
: A-Sequence 星級 : ★★☆☆☆ 題組: Online-judge.uva.es PROBLEM SET Volume CIX 題號: Problem D : A-Sequence 解題者:薛祖淵 解題日期: 2006 年 2 月 21 日 題意:一開始先輸入一個.
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
1.1 線性方程式系統簡介 1.2 高斯消去法與高斯-喬登消去法 1.3 線性方程式系統的應用(-Skip-)
1 Web of Science 利用指引 單元二 瀏覽與處理查詢結果. 2 瀏覽檢索結果 查出的結果,預設以時間排列, 使用者可改變結果的排列方式: 還可以依被引用次數、相關度、 第一作者、刊名、出版年等排序 回到前先查的結果畫面 點選想看資料的完整書目 本館訂購範圍的期刊 全文,便可直接連結.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 參 實驗法.
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Stat_chi21 類別資料 (Categorical data) 一種質性資料, 其觀察值可歸類於數個不相交的項目內, 例 : 性別, 滿意度, …, 一般以各項的統計次數表現. 分析此種資料,通常用卡方檢定 類別資料分析 卡方檢定 卡方檢定基本理論 一個含有 k 項的試驗,設 p i.
©Ming-chi Chen 社會統計 Page.1 社會統計 第十講 相關與共變. ©Ming-chi Chen 社會統計 Page.2 Covariance, 共變量 當 X, Y 兩隨機變數不互為獨立時,表示 兩者間有關連。其關連的形式有很多種, 最常見的關連為線性的共變關係。 隨機變數 X,Y.
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
Chapter 2 聯立線性方程式與矩陣 緒言 線性方程式組 (systems of linear equations) 出現 在多數線性模式 (linear model) 中。根據以往解 題的經驗,讀者們也許已發現方程式的解僅與 該方程式的係數有關,求解的過程也僅與係數 的運算有關,只要係數間的相關位置不改變,
Section 2.3 Least-Squares Regression 最小平方迴歸
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
第 4 章 迴歸的同步推論與其他主題.
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容:利用分公司之追蹤資料進行企業決策分析 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
第一章 信號與系統初論 信號的簡介與DSP的處理方式。 系統特性與穩定性的判定方法。 以MATLAB驗證系統的線性、非時變、因果等特性。
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 政治大學東亞所選修 -- 計量分析與中國大陸研究黃智聰 政治大學東亞所選修 課程名稱:計量分析與中國大陸研究 (量化分析) 授課老師:黃智聰 授課內容:時間序列與橫斷面資料的共用 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
1 單元三 查詢結果的引用分析 Web of Science 利用指引 查看出版及被引用情況 在查詢結果的清單中,可以瀏覽近 20 年來查詢主題出版和被引用的情況。
1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
具備人臉追蹤與辨識功能的一個 智慧型數位監視系統 系統架構 在巡邏模式中 ,攝影機會左右來回巡視,並 利用動態膚色偵測得知是否有移動膚色物體, 若有移動的膚色物體則進入到追蹤模式,反之 則繼續巡視。
信度.
Chapter 13 塑模靜態觀點:物件圖 Static View : Object Diagram.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
:Problem D: Bit-wise Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10232: Problem D: Bit-wise Sequence 解題者:李濟宇 解題日期: 2006 年 4 月 16.
第三部分:研究設計 ( 二): 研究工具的信效度 與研究效度 (第九章之第 306 頁 -308 頁;第四章)
3.1 矩陣的行列式 3.2 使用基本運算求行列式 3.3 行列式的性質 3.4 特徵值介紹 3.5 行列式的應用
選舉制度、政府結構與政 黨體系 Cox (1997) Electoral institutions, cleavage strucuters, and the number of parties.
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
: Problem A : MiniMice ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11411: Problem A : MiniMice 解題者:李重儀 解題日期: 2008 年 9 月 3 日 題意:簡單的說,題目中每一隻老鼠有一個編號.
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
資料結構實習-一 參數傳遞.
政治大學公企中心必修課-- 社會科學研究方法(量化分析)--黃智聰
公用品.  該物品的數量不會因一人的消費而受到 影響,它可以同時地被多人享用。 角色分配  兩位同學當我的助手,負責:  其餘各人是投資者,每人擁有 $100 , 可以投資在兩種資產上。  記錄  計算  協助同學討論.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
函式 Function Part.2 東海大學物理系‧資訊教育 施奇廷. 遞迴( Recursion ) 函式可以「呼叫自己」,這種動作稱為 「遞迴」 此程式的執行結果相當於陷入無窮迴圈, 無法停止(只能按 Ctrl-C ) 這給我們一個暗示:函式的遞迴呼叫可以 達到部分迴圈的效果.
JAVA 程式設計與資料結構 第二十章 Searching. Sequential Searching Sequential Searching 是最簡單的一種搜尋法,此演 算法可應用在 Array 或是 Linked List 此等資料結構。 Sequential Searching 的 worst-case.
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 2. Recurrence Relations (遞迴關係)
Structural Equation Modeling Chapter 6 CFA 根據每個因素有多重指標,以減少 測量誤差並可建立問卷的構念效度 驗證性因素分析.
Chapter 10 m-way 搜尋樹與B-Tree
: Function Overloading ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11032:Function Overloading 解題者:許智祺 解題日期: 2007 年 5 月 8 日 題意:判對輸入之數字是否為.
演算法課程 (Algorithms) 國立聯合大學 資訊管理學系 陳士杰老師 Course 7 貪婪法則 Greedy Approach.
描述統計 描述統計(Descriptive Statistics)-將蒐集到的資料加以整理和記錄,並以數字和統計圖表的方式來分析及解釋資料所具有的特性. 基本統計值(平均數,中位數,標準差,變異量….) 相關性測量(卡方,相關係數,迴歸…)
Building a knowledge base for MIS research: A meta-analysis of a systems success model Mark I Hwang, John C Windsor, Alan Pryor Information Resources Management.
第十二章 變異數分析 12.1 單因子變異數分析 1-way ANOVA Subject : 比較三組以上的母體平均數 k 組資料,母體平均數為 μ 1, …, μ i, …, μ k Data : k 組資料,樣本數為 n 1,…, n k. x ij --- 第 i 組的第 j 個觀察值 N =
2005/7 Linear system-1 The Linear Equation System and Eliminations.
連續隨機變數 連續變數:時間、分數、重量、……
: Wine trading in Gergovia ★★☆☆☆ 題組: Contest Volumes with Online Judge 題號: 11054: Wine trading in Gergovia 解題者:劉洙愷 解題日期: 2008 年 2 月 29 日 題意:在 Gergovia.
第五章IIR數位濾波器設計 濾波器的功能乃對於數位信號進行處理﹐ 以滿足系統的需求規格。其作法為設計一 個系統的轉移函數﹐或者差分方程式﹐使 其頻率響應落在規格的範圍內。本章探討 的是其中一種方法﹐稱為Infinite impulse register(IIR)。 IIR架構說明。 各種不同頻帶(Band)濾波器的設計方法。
Regression 相關 –Cross table –Bivariate –Contingency Cofficient –Rank Correlation 簡單迴歸 多元迴歸.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
幼兒行為觀察與記錄 第八章 事件取樣法.
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
: How many 0's? ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11038: How many 0’s? 解題者:楊鵬宇 解題日期: 2007 年 5 月 15 日 題意:寫下題目給的 m 與 n(m
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Presentation transcript:

第四章 相關分析 (correlation analysis) 4-1 相關分析 4-2 Pearson 積差相關係數 4-3  相關係數 4-4 點二系列相關 4-5 Spearman 等級相關 4-6 淨相關 4-7 部份相關

4-1 相關分析   相關分析探討的是兩個變數之間的關聯程度 (degree of association), 若是兩個變數是名目變數, 請使用X2卡方檢定, 這裏使用的是區間, 比率或順序的計量變數,在統計上, 使用的是兩個變數關連程度的統計量, 例如, 常用的Pearson 相關分析的Pearson相關係數, 就是用來表示兩個變數之間的關連程度   相關係數(correlation coefficient) 是本章最重要的判讀依據, 有大小和方向兩種特性, 我們分別介紹如下: 相關係數的大小(magnitude):表示兩個變數之間, 相關程度的強弱, 相關係  數的絶對值愈大, 代表相關程度愈強, 相反的, 相關係數的絶對值愈小, 代表  相關程度愈弱, 若是相關係數的值為0, 代表零相關, 也就是没有相關。 相關係數的方向(direction):表示兩個變數之間, 是正相關, 還是負相關, 相  關係數是正值, 代表兩個變數中的一個變數增加時, 另一個變數也會增加,    相關係數是負值, 代表兩個變數中的一個變數增加時, 另一個變數就會減少,  反之亦然。   一般常用的相關分析有Pearson積差相關係數, 相關係數, 點二系列相關, Spearman等級相關, 淨相關, 和部份相關, (複相關大多都使用迴歸,請參考迴歸分析), 相關的內容我們分別介紹如後。

4-2 Pearson積差相關係數   Pearson積差相關係數(Product-Moment Correlation Coefficient) 是適用於2個變數都是連續變數, 可以是interval scale (區間變數)或ratio scale(比率變數), 相關係數的計算如下:

rXY的圖示 rXY樣本的相關係數是一次方的函數, 可以用散佈圖來查看。 rXY為正相關的圖如下: rXY為負相關的圖如下: y y  

rXY值的判別   在判定rXY值時, 一般常用三級制, 絶對值大於等於0.8時, 為高度相關, 大於等於0.4時, 為中度相關, 小於0.4時, 為低度相關 研究假設如下: 虛無假設 H0: = 0, 兩個變數之間無相關 對立假設 H1:  0, 兩個變數之間有相關 範例:   Trust有用性(使用資安產品可以加速工作時間)及Risk易用性(資安產品很容易使用)之間是否有相關存在。(題項:Trust、Risk) 假設:

操作步驟如下: 開啟範例 correlation.sav, 出現圖如下: 1. 開啟範例 correlation.sav 2. 按 Analyze  Correlate  Bivariate 3. 在 Bivariate Correlations 視窗,選取 信任 Trust和風險 Risk 變數 4. 選取 信任 Trust和風險 Risk 變數,按 〉,選取 Pearson (預設) 5. 按 OK,出現報表結果,如下圖:

報表分析如下: Correlations ** Correlation is significant at the 0.01 level (2-tailed). 說明:p-value= .001 < .05,因此拒絕     ,表示 Trust 及 Risk 間具有顯著相關,相關係數為0.278,屬低度相關。

4-3  相關係數    相關係數(Phi correlation coefficient) 適用於二個變數都是二分名義變數 (nominal-dichotomous variable), 也就是都是二分類的變數。 例如:性別, 民主和共產國家…等等。    相關係數值為卡方X2的另一種轉換值, 由於X2容易受到, 樣本數大小的影響, 於是將X2轉換成0 ~1之間, 0代表無相關, 1化表高度相關, 值的計算方式如下:   = 範例: 學歷與職位間有無關係,題項:grade(學歷)、position (職位) 說明:       H0無關係 ,H1有關係

操作步驟如下: 1. 開啟範例 correlation.sav, 出現圖如下: 2. 按 Descriptive Statistics  Crosstabs 3. 在 Crosstabs 視窗,選 grade (學歷)到 Row(s) ,選 position (職位)到 Column(s) 4. 按 Statistics,選 Chi-square,Phi and Cramer’s V 5. 按 Continue, 回到 Crosstabs 視窗 6. 按 OK,出現報表結果,如下圖 :

報表分析如下: Crosstabs Case Processing Summary 學歷 * 職位 Crosstabulation Count

Chi-Square Tests a 15 cells (75.0%) have expected count less than 5. The minimum expected count is .03. Symmetric Measures a Not assuming the null hypothesis. b Using the asymptotic standard error assuming the null hypothesis. 說明:p-vlaue= .000< .05,故學歷與職位間有顯著相關。

4-4 點二系列相關   點二系列相關(Point-biserial Correlation) 適用於一個變數為二分名義變數, 另一個為連續變數 (區間變數或比率變數), 點二系列的相關係數計算如下: 注意:在SPSS軟體中, 没有處理點二系列相關係數的選項, 由於計算點二系列的相關係數值會與Pearson相關係數值一樣, 所以, 在處理點二系列相關問題時, 都會採用Pearson相關係數的步驟來計算。

4-5 Spearman等級相關   Spearman等級相關係數 (Rank Order Correlation Coefficient) 適用於兩個變數皆為順序尺度, 其目的是在算出兩組等級之間一致的程度, 例如, 可以用在兩個人對於N台筆記型電腦進行印象分數等級的評定或則是1個人對於N台筆記型電腦進行前後二次印象分數等級的評定。 Spearman等級相關係數的計算如下: 範例:   某單位顧問對於廠商同樣的產品,前後加以評分給等第,我們想知道前後加以評分給等第之間是否有相關存在,題項:Score1(分數1)、Score2(分數2) 說明:

操作步驟如下: 1. 開啟範例 correlation.sav 2. 按 Analyze  Correlate  Bivariate 3. 在Bivariate Correlations 視窗,將 score1 (分數1)和 score2 (分數2)選入 variables,選取 Spearman 4. 按OK,出現報表結果

輸出報表結果如下: Nonparametric Correlations Correlations ** Correlation is significant at the 0.01 level (2-tailed). 說明: p-value= .000< .05,拒絕H0,表示前後加以評分給等第之間的結果相近,相關係數達 0.766 ,屬於高度正相關。

4-6 淨相關   淨相關(Partial Correlation)又被稱為偏相關, 在前面Pearson相關係數討論中, 我們是直接探討二個變數之間的相關程度, 但是, 如果這二個變數同時與第三個變數有關係時, 也就是說, 這二個變數可能會受到第三個變數的干擾, 這時, 我們想了解原先二個變數的相關是否是由第三個變數所造成的影響, 就可以將第三個變數的影響效果控制住, 也就是計算與第三個變數有相關部份排除後, 原先二個變數的純淨相關 淨相關係數的展示式:例如有X1, X2兩變數, 第三變數為X3 X1和 X2相關係數 = r12 X1和 X3相關係數 = r13 X2和 X3相關係數 = r23 X1和 X2相關係數並排除r13和 r23時的淨相關係數= r12.3 r12.3=

研究假設: 虛無假設H0:r= 0 兩者無淨相關 對立假設H1:r 0 兩者有淨相關 範例:   易用性與傾向使用均與有用性成正相關,計算易用性與傾向使用的淨相關。(題項:PU、PEOU、ITU) 說明:           H0無關係,H1有關係

操作步驟如下: 1. 開啟範例 correlation.sav 2. 按 Analyze  Correlate  Partial 3. 在 Partial Correlations 視窗,將 PEOU (易用性)和 ITU(傾向使用)選入 variables,將 PU(有用性)選入   Controlling for 4. 按 Options, 選取 Means and standard deviation 和 Zero-order correlations 5. 按 Continue,回到 Partial Correlations 視窗 6. 按OK,出現報表結果

輸出報表結果如下: Partial Corr Descriptive Statistics

 Correlations a Cells contain zero-order (Pearson) correlations.

說明: 1.       = .394,p-value=.000<.05,因此拒絕H0 :r=0,表示   未排除 PU前,PEOU與ITU具顯著相關。 2.       =.251,p-value=.002<.05,因此拒絕H0 :r=0 ,表示  排除PU後,PEOU與ITU具顯著相關。 結論: PU(易用性)和PEOU(傾向使用) 兩者有淨相關值為       =.251 。

4-7 部份相關   部份相關(part correlation) 又被稱為半淨相關 (semipartial correlation ), 原因是部份相關在處理時, 是處理淨相關的部份, 淨相關是X1和 X2變數, 排除第三變數 X3的影響後, 所得到X1和 X2的淨相關, 而部份相關則是在處理排除效果時, 僅處理第三變數X3與X1或 X2其中一個變數相關, 得到的結果稱為部份相關 部份相關的表示式: r 1(2.3)= r (2.3):X2中排除X3的影響力 r 12:X1和 X2的相關係數 r 13:X1和X3的相關係數 r 23:X2和X3的相關係數 注意:請比較淨相關和部份相關的表示式, 會發覺只有分母部份不相同, 這意味著, 淨相關和部份相關的值不會一樣, 一般淨相關的絶對值會大於部份相關的絶對值。 範例:易用性與傾向使用均與有用性成正相關,計算易用性與傾向使用的淨相關。(題項:PU、PEOU、ITU) 說明:       H0無關係 ,H1有關係

操作步驟如下: 1. 開啟範例 correlation.sav 2. 按 Analyze  Regression  Linear 3. 在 Linear Regression 視窗,將 ITU(傾向使用)選入  Dependent,將PU(有用性)和 PEOU (易用性) 選入  independent 4. 按 Statistics,選取 Estimates,Model fit 和 Part and  partial correlations 5. 按Continue,回到 Linear Regression 視窗 6. 按OK,出現報表結果

報表分析結果如下: Regression Variables Entered/Removed(b) a All requested variables entered. b Dependent Variable: 傾向使用 Model Summary a Predictors: (Constant), 易用性, 有用性

ANOVA(b) Coefficients(a) a Predictors: (Constant), 易用性, 有用性 b Dependent Variable: 傾向使用 Coefficients(a) a Dependent Variable: 傾向使用 說明:由上表知,有用性與傾向使用的淨相關為.398,部份相關為.366。易用性與傾向使用的淨相關為.251,部份相關為.219。