What drives the oceanic circulation ? Thermohaline driven Wind driven.

Slides:



Advertisements
Similar presentations
SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 Talley SIO210 (2014)1 Variation of Coriolis with latitude: “β” Vorticity Potential vorticity.
Advertisements

Thermohaline circulation ●The concept of meridional overturning ●Deep water formation and property Antarctic Bottom Water North Atlantic Deep Water Antarctic.
Surface winds An air parcel initially at rest will move from high pressure to low pressure (pressure gradient force) Geostrophic wind blows parallel to.
Atmospheric Motion ENVI 1400: Lecture 3.
Western Intensification Subtropical gyres are asymmetric & have intense WBC’s Western intensification is created by the conservation of angular momentum.
What drives the oceanic circulation ? Thermohaline driven (-> exercise) Wind driven (-> Sverdrup, Ekman)
The Subtropical Gyres: setting the stage for generating a more realistic gyre Ekman used an ideal, infinite ocean, no slopes in sea level, or variations.
Chapter 5: Other Major Current Systems
Wind-driven Ocean Circulation
Highways in the Sea (Chapter 9)
=(S,,0); 4=(S,,4000).
Lecture 7: The Oceans (1) EarthsClimate_Web_Chapter.pdfEarthsClimate_Web_Chapter.pdf, p
Wind-driven circulation II
General Atmospheric Circulation
Define Current decreases exponentially with depth. At the same time, its direction changes clockwise with depth (The Ekman spiral). we have,. and At the.
Get a piece of paper and write A B C D. Answer the following.
Surface wind stress Approaching sea surface, the geostrophic balance is broken, even for large scales. The major reason is the influences of the winds.
Evaporative heat flux (Q e ) 51% of the heat input into the ocean is used for evaporation. Evaporation starts when the air over the ocean is unsaturated.
Define Current decreases exponentially with depth and. At the same time, its direction changes clockwise with depth (The Ekman spiral). we have,. and At.
Class 8. Oceans II. Ekman pumping/suction Wind-driven ocean flow Equations with wind-stress.
Vorticity Measure of angular momentum for a fluid
Alternative derivation of Sverdrup Relation Construct vorticity equation from geostrophic balance (1) (2)  Integrating over the whole ocean depth, we.
General Ocean Circulation. Wind driven circulation About 10% of the water is moved by surface currents Surface currents are primarily driven by the wind.
Rossby Wave Two-layer model with rigid lid η=0, p s ≠0 The pressures for the upper and lower layers are The perturbations are 
Ocean Circulation Currents. Horizontally Vertically.
AOSC 200 Lesson 14. Oceanography The oceans plat three important roles in determining weather and climate (1) They are the major source of water vapor.
Equitorial_Currents1 Equatorial Currents and Counter Currents Kurt House 3/25/2004.
Planetary Atmospheres, the Environment and Life (ExCos2Y) Topic 6: Wind Chris Parkes Rm 455 Kelvin Building.
Term Paper Guide Find an oceanic or relevant atmospheric phenomenon you are interested in (e.g., ENSO, PDO, AMO, TAV, IOD, NAO, hurricane activity, regional.
Latitude structure of the circulation Figure 2.12 Neelin, Climate Change and Climate Modeling, Cambridge UP.
For a rotating solid object, the vorticity is two times of its angular velocity Vorticity In physical oceanography, we deal mostly with the vertical component.
Wind Driven Circulation III Closed Gyre Circulation Quasi-Geostrophic Vorticity Equation Westward intensification Stommel Model Munk Model Inertia boundary.
For a rotating solid object, the vorticity is two times of its angular velocity Vorticity In physical oceanography, we deal mostly with the vertical component.
Lecture 5: Wind & effects of friction. The atmosphere is warmer in the equatorial belt than over the polar caps. These horizontal temperature gradients.
Current Weather Introduction to Air-Sea interactions Ekman Transport Sub-tropical and sub-polar gyres Upwelling and downwelling Return Exam I For Next.
An example of vertical profiles of temperature, salinity and density.
How Does Air Move Around the Globe?
Typical Distributions of Water Characteristics in the Oceans.
Thermohaline Circulation Lecture Outline 1)What is thermohaline circulation 2)History of understanding 3)Key water masses 4)Formation of deep water 5)Theory.
Ekman pumping Integrating the continuity equation through the layer:. Assume and let, we have is transport into or out of the bottom of the Ekman layer.
For most of the basin Question
12.808, Problem 1, problem set #2 This is a 3 part question dealing with the wind-driven circulation. At 26 o N in the N. Atlantic, the average wind stress.
Motion in the Ocean.
Class 8. Oceans Figure: Ocean Depth (mean = 3.7 km)
Ocean Dynamics Previous Lectures So far we have discussed the equations of motion ignoring the role of friction In order to understand ocean circulations.
 p and  surfaces are parallel =>  =  (p) Given a barotropic and hydrostatic conditions, is geostrophic current. For a barotropic flow, we have and.
Wind-driven circulation II ●Wind pattern and oceanic gyres ●Sverdrup Relation ●Vorticity Equation.
Salinity and Density Differences VERTICAL STRUCTURE, THERMOHALINE CIRCULATION & WATER MASSES.
CoriolisPressure Gradient x z CURRENTS WITH FRICTION Nansen’s qualitative argument on effects of friction CoriolisPressure Gradient x y CoriolisPressure.
Forces and accelerations in a fluid: (a) acceleration, (b) advection, (c) pressure gradient force, (d) gravity, and (e) acceleration associated with viscosity.
The Oceanic General Circulation. Regardless of hemisphere or ocean basin, there is an intense current on the western boundary.
Sverdrup, Stommel, and Munk Theories of the Gulf Stream
Sea surface temperatures Sea water T varies with position in oceans Amount of insolation absorbed depends upon angle of incidence –With normal incidence,
For a barotropic flow, we have is geostrophic current.
Define and we have • At the sea surface (z=0), the surface current flows at 45o to the right of the wind direction Depends on constant Az => • Current.
Define and we have • At the sea surface (z=0), the surface current flows at 45o to the right of the wind direction Depends on constant Az => • Current.
Wind-driven circulation
Define and we have • At the sea surface (z=0), the surface current flows at 45o to the right of the wind direction Depends on constant Az => • Current.
Define and we have • At the sea surface (z=0), the surface current flows at 45o to the right of the wind direction Depends on constant Az => • Current.
How to create a subtropical gyre circulation I
Ekman layer at the bottom of the sea
Wind Driven Circulation III
For a barotropic flow, we have is geostrophic current.
EarthsClimate_Web_Chapter.pdf, p
Ocean Currents and Circulation.
Western Boundary Currents
Ocean Currents and Circulation.
Week 6-7: Wind-driven ocean circulation Tally’s book, chapter 7
(Pinet) Major ocean current systems 4 Surface patterns extend as deep as 1000 m 5.
TALLEY Copyright © 2011 Elsevier Inc. All rights reserved
Presentation transcript:

What drives the oceanic circulation ? Thermohaline driven Wind driven

some of the observed main global surface current systems.

Ocean waters respond to the wind stress because of their low resistance to shear (low viscosity, even after viscosity magnification by turbulence) and because of the relative consistency with which winds blow over the ocean. Good examples are the trade winds in the tropics; they are so steady that, shortly after Christopher Columbus and until the advent of steam, ships chartered their courses across the Atlantic according to those winds; hence their name. Further away from the tropics are winds blowing in the opposite direction. While trade winds blow from the east and slightly toward the equator, midlatitude winds blow from west to east and are called westerlies.

The water column can be broadly divided into four segments: At the top lies the mixed layer that is stirred by the surface wind stress. With a depth on the order of 10 m, this layer includes Ekman dynamics and is characterized by d rho/dz ≃ 0. Below lies a layer called the seasonal thermocline, a layer in which the vertical stratification is erased every winter by convection. Its depth is on the order of 100 m. Below the maximum depth of winter convection is the main thermocline, which is permanently stratified. Ist thickness is on the order of 500 to 1000 m. The rest of the water column, which comprises most of the ocean water, is the abyssal layer. It is very cold, and its movement is very slow.

History The discipline began with the seminal works of Harald Sverdrup, who formulated the equations of large-scale ocean dynamics (Sverdrup, 1947) and Henry Stommel beginning with the first correct theory for the Gulf Strean (Stommel, 1948).

Basic equations Geostrophy Hydrostatic balance continuity equation (mass conservation for an incompressible fluid) conservation of heat and salt (density)

Definitions u, v and w are the velocity components in the eastward, northward and upward directions, rho0 is the reference density (a constant), rho is the density anomaly, the difference between the actual density and rho0, p is the hydrostatic pressure induced by the density anomaly This set of five equations for five unknowns (u, v, w, p and rho) is sometimes referred to as Sverdrup dynamics.

Sverdrup Relation vertical stretching (+), or squeezing (-) demands a change in meridional velocity Pressure eliminated Conservation of mass Streching -> shrink laterally -> (zeta+f)/h requires vorticity to increase The parcel has no choice but to migrate meridionally in search for a ``better f´´ df/dt= ß v

Sverdrup Balance

Ekman the vertical flow from the surface Ekman layer into the geostrophic interior is

… relates the integral meridional flow throughout the vertical extent of the treated layer to the local windstress curl. Sverdrup Balance

we can introduce a Sverdrup streamfunction Sverdrup Balance

Being that the curl is negative throughout the subtropics, it follows that the meridional flux must be everywhere equatorward. But such a situation, if sustained, will progressively empty the midlatitude oceans, while piling-up more and more water along the Equator; a clear physical impossibility! There must be somewhere a return poleward flow that `drains' the Equatorial region while replenishing the midlatitude missing volume.

Boundary Current The vorticity generation by the interactions of boundary currents: northward-flowing boundary current, The sense of the generated vorticity is shown for northern hemisphere flows.