Spherical Parameterization and Remeshing Emil Praun, University of Utah Hugues Hoppe, Microsoft Research.

Slides:



Advertisements
Similar presentations
Signal-Specialized Parametrization Microsoft Research 1 Harvard University 2 Microsoft Research 1 Harvard University 2 Steven J. Gortler 2 Hugues Hoppe.
Advertisements

Lapped textures Emil Praun Adam Finkelstein Hugues Hoppe
Texture-Mapping Progressive Meshes
Shape Compression using Spherical Geometry Images
Multi-chart Geometry Images Pedro Sander Harvard Harvard Hugues Hoppe Microsoft Research Hugues Hoppe Microsoft Research Steven Gortler Harvard Harvard.
Least-squares Meshes Olga Sorkine and Daniel Cohen-Or Tel-Aviv University SMI 2004.
Surface Compression with Geometric Bandelets Gabriel Peyré Stéphane Mallat.
Consistent Mesh Parameterizations Peter Schröder Caltech Wim Sweldens Bell Labs Emil Praun Princeton.
Geometry Image Xianfeng Gu, Steven Gortler, Hugues Hoppe SIGGRAPH 2002 Present by Pin Ren Feb 13, 2003.
Anton S. Kaplanyan Karlsruhe Institute of Technology, Germany Path Space Regularization Framework.
3D Surface Parameterization Olga Sorkine, May 2005.
Multiresolution Analysis of Arbitrary Meshes Matthias Eck joint with Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery and Werner Stuetzle Matthias.
Xianfeng Gu, Yaling Wang, Tony Chan, Paul Thompson, Shing-Tung Yau
Inter-Surface Mapping John Schreiner, Arul Asirvatham, Emil Praun (University of Utah) Hugues Hoppe (Microsoft Research)
MATHIEU GAUTHIER PIERRE POULIN LIGUM, DEPT. I.R.O. UNIVERSITÉ DE MONTRÉAL GRAPHICS INTERFACE 2009 Preserving Sharp Edges in Geometry Images.
Consistent Spherical Parameterization Arul Asirvatham, Emil Praun (University of Utah) Hugues Hoppe (Microsoft Research)
Geometry Images Steven Gortler Harvard University Steven Gortler Harvard University Xianfeng Gu Harvard University Xianfeng Gu Harvard University Hugues.
Lapped Textures Emil Praun and Adam Finkelstien (Princeton University) Huges Hoppe (Microsoft Research) SIGGRAPH 2000 Presented by Anteneh.
Signal-Specialized Parameterization for Piecewise Linear Reconstruction Geetika Tewari, Harvard University John Snyder, Microsoft Research Pedro V. Sander,
Signal-Specialized Parametrization Microsoft Research 1 Harvard University 2 Microsoft Research 1 Harvard University 2 Steven J. Gortler 2 Hugues Hoppe.
1 Displaced Subdivision Surfaces Aaron Lee Princeton University Henry Moreton Nvidia Hugues Hoppe Microsoft Research.
Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis Kun Zhou, John Snyder*, Baining Guo, Heung-Yeung Shum Microsoft Research Asia.
Lapped Textures Emil Praun Adam Finkelstein Hugues Hoppe Emil Praun Adam Finkelstein Hugues Hoppe Princeton University Microsoft Research Princeton University.
Compressing Texture Coordinates Martin IsenburgJack Snoeyink University of North Carolina at Chapel Hill with h Selective Linear Predictions.
Cutting a surface into a Disk Jie Gao Nov. 27, 2002.
Lapped Textures Emil Praun Adam Finkelstein Hugues Hoppe Emil Praun Adam Finkelstein Hugues Hoppe Princeton University Microsoft Research Princeton University.
Bounded-distortion Piecewise Mesh Parameterization
Lapped Textures SIGGRAPH 2000 Emil Praun Adam Finkelstein Hugues Hoppe.
Advanced Computer Graphics (Fall 2010) CS 283, Lecture 4: 3D Objects and Meshes Ravi Ramamoorthi
Surface Parametrizations Hugues Hoppe Microsoft Research IMA Workshop on Computer Graphics May 18, 2001 Hugues Hoppe Microsoft Research IMA Workshop on.
Visualization and graphics research group CIPIC January 30, 2003Multiresolution (ECS 289L) - Winter MAPS – Multiresolution Adaptive Parameterization.
1 Dr. Scott Schaefer Surface Parameterization. Parameterization and Texturing 2/30.
Irregular to Completely Regular Meshing in Computer Graphics Hugues Hoppe Microsoft Research International Meshing Roundtable 2002/09/17 Hugues Hoppe Microsoft.
Mesh Parameterization: Theory and Practice Non-Planar Domains.
Visualization and graphics research group CIPIC Feb 18, 2003Multiresolution (ECS 289L) - Winter Progressive Meshes (SIGGRAPH ’96) By Hugues Hoppe.
Part Two Multiresolution Analysis of Arbitrary Meshes M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle SIGGRAPH 95.
Consistent Parameterizations Arul Asirvatham Committee Members Emil Praun Hugues Hoppe Peter Shirley.
Smooth Geometry Images Frank Losasso, Hugues Hoppe, Scott Schaefer, Joe Warren.
Geometry Videos Symposium on Computer Animation 2003 Hector M. Briceño Collaborators: Pedro V. Sander, Leonard McMillan, Steven Gortler, and Hugues Hoppe.
All-Hex Meshing using Singularity-Restricted Field Yufei Li 1, Yang Liu 2, Weiwei Xu 2, Wenping Wang 1, Baining Guo 2 1. The University of Hong Kong 2.
Projective Texture Atlas for 3D Photography Jonas Sossai Júnior Luiz Velho IMPA.
Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Direct Quad-Dominated Anisotropic Remeshing Martin Marinov and Leif Kobbelt.
Parameterization.
Intrinsic Parameterization for Surface Meshes Mathieu Desbrun, Mark Meyer, Pierre Alliez CS598MJG Presented by Wei-Wen Feng 2004/10/5.
Signal-Specialized Parameterization for Piecewise Linear Reconstruction Geetika Tewari, Harvard University John Snyder, Microsoft Research Pedro V. Sander,
Mesh Parameterizations Lizheng Lu Oct. 19, 2005.
1 Mesh Parametrization and Its Applications 동의대학교 멀티미디어공학과 김형석 포항공과대학교 ( 이윤진, 이승용 )
Texture Mapping by Model Pelting and Blending
Geometric Modeling using Polygonal Meshes Lecture 1: Introduction Hamid Laga Office: South.
1 Surface Applications Fitting Manifold Surfaces To 3D Point Clouds, Cindy Grimm, David Laidlaw and Joseph Crisco. Journal of Biomechanical Engineering,
Geometry Images Xiang Gu Harvard University Steven J. Gortler Harvard university Hugues Hoppe Microsoft Research Some slides taken from Hugues Hoppe.
Why manifolds?. Motivation We know well how to compute with planar domains and functions many graphics and geometric modeling applications involve domains.
1 Adding charts anywhere Assume a cow is a sphere Cindy Grimm and John Hughes, “Parameterizing n-holed tori”, Mathematics of Surfaces X, 2003 Cindy Grimm,
Computer Graphics Some slides courtesy of Pierre Alliez and Craig Gotsman Texture mapping and parameterization.
Subdivision Schemes Basic idea: Start with something coarse, and refine it into smaller pieces for rendering –We have seen how subdivision may be used.
Extraction and remeshing of ellipsoidal representations from mesh data Patricio Simari Karan Singh.
Spectral Compression of Mesh Geometry (Karni and Gotsman 2000) Presenter: Eric Lorimer.
Polygonal Simplification Techniques
Mesh Coarsening zhenyu shu Mesh Coarsening Large meshes are commonly used in numerous application area Modern range scanning devices are used.
1 Polygonal Techniques 이영건. 2 Introduction This chapter –Discuss a variety of problems that are encountered within polygonal data sets The.
Controlled-Distortion Constrained Global Parametrization
Automatic Construction of Quad-Based Subdivision Surfaces using Fitmaps Daniele Panozzo, Enrico Puppo DISI - University of Genova, Italy Marco Tarini DICOM.
Recent Progress in Mesh Parameterization Speaker : ZhangLei.
Reverse Engineering of Point Clouds to Obtain Trimmed NURBS Lavanya Sita Tekumalla Advisor: Prof. Elaine Cohen School of Computing University of Utah Masters.
Subdivision Schemes. Center for Graphics and Geometric Computing, Technion What is Subdivision?  Subdivision is a process in which a poly-line/mesh is.
1 Spherical manifolds for hierarchical surface modeling Cindy Grimm.
Morphing and Shape Processing
Surface parametrizations
Mesh Parameterization: Theory and Practice
Inter-Surface Mapping
Presentation transcript:

Spherical Parameterization and Remeshing Emil Praun, University of Utah Hugues Hoppe, Microsoft Research

Motivation: Geometry Images [Gu et al. ’02] 3D geometry completely regular sampling geometry image 257 x 257; 12 bits/channel

Geometry Images [Gu et al. ’02] No connectivity to store No connectivity to store Render without memory gather operations Render without memory gather operations –No vertex indices –No texture coordinates Regularity allows use of image processing tools Regularity allows use of image processing tools Motivation: Geometry Images

Spherical Parametrization geometry image 257 x 257; 12 bits/channel Genus-0 models: no a priori cuts

Contribution Our method: genus-0  no constraining cuts Less distortion in map; better compression New applications: morphing morphing GPU splines GPU splines DSP DSP

Process

Outline 1.Spherical parametrization 2.Spherical remeshing 3.Results & applications

Spherical Parametrization Goals: robustness robustness good sampling good sampling sphere S mesh M [Sander et al. 2001] [Hormann et al. 1999] [Sander et al. 2002] [Hoppe 1996]  coarse-to-fine  stretch metric  coarse-to-fine  stretch metric [Kent et al. ’92] [Haker et al. 2000] [Alexa 2002] [Grimm 2002] [Sheffer et al. 2003] [Gotsman et al. 2003]

Coarse-to-Fine Algorithm Convert to progressive mesh Parametrize coarse-to-fine Maintain embedding & minimize stretch

Before Vsplit: No degenerate/flipped  No degenerate/flipped   1-ring kernel  Apply Vsplit: No flips if V inside kernel V Coarse-to-Fine Algorithm

Before Vsplit: No degenerate/flipped  No degenerate/flipped   1-ring kernel  Apply Vsplit: No flips if V inside kernel Optimize stretch: No degenerate  (they have  stretch) V Coarse-to-Fine Algorithm

Traditional Conformal Metric Preserve angles but “area compression” Bad for sampling using regular grids

Stretch Metric [Sander et al. 2001] [Sander et al. 2002] Penalizes undersampling Better samples the surface

Regularized Stretch Stretch alone is unstable Add small fraction of inverse stretch withoutwith

Outline 1.Spherical parametrization 2.Spherical remeshing 3.Results & applications

Domains And Their Sphere Maps tetrahedron octahedron cube

Domain Unfoldings

Boundary Constraints

Spherical Image Topology

Outline 1.Spherical parametrization 2.Spherical remeshing 3.Results & applications

Example Results

Results

David Model courtesy of Stanford University

Timing Results Model # faces Time Cow23,216 7 min. 7 min. David60,000 8 min. Bunny69, min. Horse96, min. Gargoyle200, min. Tyrannosaurus200, min. Pentium IV, 3GHz, initial code

Timing Results Model # faces Time Cow23, sec. David60, sec. Bunny69, min. Horse96, min. Gargoyle200,000 4 min. Tyrannosaurus200,000 Pentium IV, 3GHz, optimized code

Rendering interpret domain render tessellation

Level-of-Detail Control n=1 n=2 n=4 n=8 n=16 n=32 n=64

Morphing Align meshes & interpolate geometry images

Geometry Compression Image wavelets Boundary extension rules Boundary extension rules –spherical topology –Infinite C 1 lattice* Globally smooth parametrization* Globally smooth parametrization* *(except edge midpoints)

Compression Results 12 KB3 KB1.5 KB

Compression Results

Smooth Geometry Images 33x33 geometry image C 1 surface GPU 3.17 ms [Losasso et al. 2003] ordinary uniform bicubic B-spline

Summary original spherical parametrization geometry image remesh

Conclusions Spherical parametrization Guaranteed one-to-one Guaranteed one-to-one New construction for geometry images Specialized to genus-0 Specialized to genus-0 No a priori cuts  better performance No a priori cuts  better performance New boundary extension rules New boundary extension rules –Effective compression, DSP, GPU splines, …

Future Work Explore DSP on unfolded octahedron 4 singular points at image edge midpoints 4 singular points at image edge midpoints Fine-to-coarse integrated metric tensors Faster parametrization; signal-specialized map Faster parametrization; signal-specialized map Direct D  S  M optimization Consistent inter-model parametrization