CS 430 Computer Architecture 1 CS 430 – Computer Architecture Caches, Part II William J. Taffe using slides of David Patterson.

Slides:



Advertisements
Similar presentations
Lecture 8: Memory Hierarchy Cache Performance Kai Bu
Advertisements

Memory Hierarchy CS465 Lecture 11. D. Barbara Memory CS465 2 Control Datapath Memory Processor Input Output Big Picture: Where are We Now?  The five.
1 Copyright © 2012, Elsevier Inc. All rights reserved. Chapter 2 (and Appendix B) Memory Hierarchy Design Computer Architecture A Quantitative Approach,
Overview of Cache and Virtual MemorySlide 1 The Need for a Cache (edited from notes with Behrooz Parhami’s Computer Architecture textbook) Cache memories.
Computer ArchitectureFall 2007 © November 14th, 2007 Majd F. Sakr CS-447– Computer Architecture.
CS61C L22 Caches II (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CSCE 212 Chapter 7 Memory Hierarchy Instructor: Jason D. Bakos.
Lecturer PSOE Dan Garcia
CS61C L23 Cache II (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #23 – Cache II.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 32 – Caches III Prem Kumar of Northwestern has created a quantum inverter.
Modified from notes by Saeid Nooshabadi
CS61C L22 Caches III (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #22: Caches Andy.
1  1998 Morgan Kaufmann Publishers Chapter Seven Large and Fast: Exploiting Memory Hierarchy.
CS61C L23 Caches I (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #23 Cache I.
1 Chapter Seven Large and Fast: Exploiting Memory Hierarchy.
CS61C L33 Caches III (1) Garcia, Spring 2007 © UCB Future of movies is 3D?  Dreamworks says they may exclusively release movies in this format. It’s based.
1 COMP 206: Computer Architecture and Implementation Montek Singh Mon, Oct 31, 2005 Topic: Memory Hierarchy Design (HP3 Ch. 5) (Caches, Main Memory and.
COMP3221: Microprocessors and Embedded Systems Lecture 26: Cache - II Lecturer: Hui Wu Session 2, 2005 Modified from.
CS 61C L35 Caches IV / VM I (1) Garcia, Fall 2004 © UCB Andy Carle inst.eecs.berkeley.edu/~cs61c-ta inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
Computer ArchitectureFall 2007 © November 12th, 2007 Majd F. Sakr CS-447– Computer Architecture.
CS61C L33 Caches III (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
1  1998 Morgan Kaufmann Publishers Chapter Seven Large and Fast: Exploiting Memory Hierarchy.
COMP3221 lec34-Cache-II.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lectures 34: Cache Memory - II
CS61C L24 Cache II (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #24 Cache II.
ENEE350 Ankur Srivastava University of Maryland, College Park Based on Slides from Mary Jane Irwin ( )
Cs 61C L17 Cache.1 Patterson Spring 99 ©UCB CS61C Cache Memory Lecture 17 March 31, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html.
Computer ArchitectureFall 2008 © November 3 rd, 2008 Nael Abu-Ghazaleh CS-447– Computer.
CS61C L18 Cache2 © UC Regents 1 CS61C - Machine Structures Lecture 18 - Caches, Part II November 1, 2000 David Patterson
CS61C L32 Caches III (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C.
CS 61C L23 Caches IV / VM I (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C :
1 CSE SUNY New Paltz Chapter Seven Exploiting Memory Hierarchy.
Computer ArchitectureFall 2007 © November 12th, 2007 Majd F. Sakr CS-447– Computer Architecture.
Memory Hierarchy and Cache Design The following sources are used for preparing these slides: Lecture 14 from the course Computer architecture ECE 201 by.
Lecture 10 Memory Hierarchy and Cache Design Computer Architecture COE 501.
The Memory Hierarchy 21/05/2009Lecture 32_CA&O_Engr Umbreen Sabir.
10/18: Lecture topics Memory Hierarchy –Why it works: Locality –Levels in the hierarchy Cache access –Mapping strategies Cache performance Replacement.
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 10 Memory Hierarchy.
CSIE30300 Computer Architecture Unit 08: Cache Hsin-Chou Chi [Adapted from material by and
3-May-2006cse cache © DW Johnson and University of Washington1 Cache Memory CSE 410, Spring 2006 Computer Systems
1 How will execution time grow with SIZE? int array[SIZE]; int sum = 0; for (int i = 0 ; i < ; ++ i) { for (int j = 0 ; j < SIZE ; ++ j) { sum +=
Lecture 08: Memory Hierarchy Cache Performance Kai Bu
Csci 211 Computer System Architecture – Review on Cache Memory Xiuzhen Cheng
1 Chapter Seven. 2 Users want large and fast memories! SRAM access times are ns at cost of $100 to $250 per Mbyte. DRAM access times are ns.
Nov. 15, 2000Systems Architecture II1 Machine Organization (CS 570) Lecture 8: Memory Hierarchy Design * Jeremy R. Johnson Wed. Nov. 15, 2000 *This lecture.
CS.305 Computer Architecture Memory: Caches Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005, and from slides kindly made available.
CPE232 Cache Introduction1 CPE 232 Computer Organization Spring 2006 Cache Introduction Dr. Gheith Abandah [Adapted from the slides of Professor Mary Irwin.
Review °We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible. °So we create a memory hierarchy:
1 Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 14 – Caches III Google Glass may be one vision of the future of post-PC.
1 Chapter Seven. 2 Users want large and fast memories! SRAM access times are ns at cost of $100 to $250 per Mbyte. DRAM access times are ns.
Memory Hierarchy and Caches. Who Cares about Memory Hierarchy? Processor Only Thus Far in Course CPU-DRAM Gap 1980: no cache in µproc; level cache,
LECTURE 12 Virtual Memory. VIRTUAL MEMORY Just as a cache can provide fast, easy access to recently-used code and data, main memory acts as a “cache”
COMP 3221: Microprocessors and Embedded Systems Lectures 27: Cache Memory - III Lecturer: Hui Wu Session 2, 2005 Modified.
Lecture slides originally adapted from Prof. Valeriu Beiu (Washington State University, Spring 2005, EE 334)
CPE 626 CPU Resources: Introduction to Cache Memories Aleksandar Milenkovic Web:
CMSC 611: Advanced Computer Architecture
How will execution time grow with SIZE?
CS61C : Machine Structures Lecture 6. 2
Chapter 8 Digital Design and Computer Architecture: ARM® Edition
CS61C : Machine Structures Lecture 6. 2
So we create a memory hierarchy:
Lecture 23: Cache, Memory, Virtual Memory
Lecture 08: Memory Hierarchy Cache Performance
Instructor Paul Pearce
ECE232: Hardware Organization and Design
EE108B Review Session #6 Daxia Ge Friday February 23rd, 2007
CS-447– Computer Architecture Lecture 20 Cache Memories
Some of the slides are adopted from David Patterson (UCB)
Csci 211 Computer System Architecture – Review on Cache Memory
10/18: Lecture Topics Using spatial locality
Presentation transcript:

CS 430 Computer Architecture 1 CS 430 – Computer Architecture Caches, Part II William J. Taffe using slides of David Patterson

CS 430 Computer Architecture 2 Review °We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible. °So we create a memory hierarchy: each successively lower level contains “most used” data from next higher level exploits temporal locality do the common case fast, worry less about the exceptions (design principle of MIPS) °Locality of reference is a Big Idea

CS 430 Computer Architecture 3 Big Idea Review (1/2) °Mechanism for transparent movement of data among levels of a storage hierarchy set of address/value bindngs address => index to set of candidates compare desired address with tag service hit or miss -load new block and binding on miss Valid Tag 0x0-3 0x4-70x8-b0xc-f abcd address: tag index offset

CS 430 Computer Architecture 4 Outline °Block Size Tradeoff °Types of Cache Misses °Fully Associative Cache °Course Advice °N-Way Associative Cache °Block Replacement Policy °Multilevel Caches (if time) °Cache write policy (if time)

CS 430 Computer Architecture 5 Block Size Tradeoff (1/3) °Benefits of Larger Block Size Spatial Locality: if we access a given word, we’re likely to access other nearby words soon (Another Big Idea) Very applicable with Stored-Program Concept: if we execute a given instruction, it’s likely that we’ll execute the next few as well Works nicely in sequential array accesses too

CS 430 Computer Architecture 6 Block Size Tradeoff (2/3) °Drawbacks of Larger Block Size Larger block size means larger miss penalty -on a miss, takes longer time to load a new block from next level If block size is too big relative to cache size, then there are too few blocks -Result: miss rate goes up °In general, minimize Average Access Time = Hit Time x Hit Rate + Miss Penalty x Miss Rate

CS 430 Computer Architecture 7 Block Size Tradeoff (3/3) °Hit Time = time to find and retrieve data from current level cache °Miss Penalty = average time to retrieve data on a current level miss (includes the possibility of misses on successive levels of memory hierarchy) °Hit Rate = % of requests that are found in current level cache °Miss Rate = 1 - Hit Rate

CS 430 Computer Architecture 8 Extreme Example: One Big Block °Cache Size = 4 bytesBlock Size = 4 bytes Only ONE entry in the cache! °If item accessed, likely accessed again soon But unlikely will be accessed again immediately! °The next access will likely to be a miss again Continually loading data into the cache but discard data (force out) before use it again Nightmare for cache designer: Ping Pong Effect Cache Data Valid Bit B 0B 1B 3 Tag B 2

CS 430 Computer Architecture 9 Block Size Tradeoff Conclusions Miss Penalty Block Size Increased Miss Penalty & Miss Rate Average Access Time Block Size Exploits Spatial Locality Fewer blocks: compromises temporal locality Miss Rate Block Size

CS 430 Computer Architecture 10 Types of Cache Misses (1/2) °Compulsory Misses occur when a program is first started cache does not contain any of that program’s data yet, so misses are bound to occur can’t be avoided easily, so won’t focus on these in this course

CS 430 Computer Architecture 11 Types of Cache Misses (2/2) °Conflict Misses miss that occurs because two distinct memory addresses map to the same cache location two blocks (which happen to map to the same location) can keep overwriting each other big problem in direct-mapped caches how do we lessen the effect of these?

CS 430 Computer Architecture 12 Dealing with Conflict Misses °Solution 1: Make the cache size bigger fails at some point °Solution 2: Multiple distinct blocks can fit in the same Cache Index?

CS 430 Computer Architecture 13 Fully Associative Cache (1/3) °Memory address fields: Tag: same as before Offset: same as before Index: non-existent °What does this mean? no “rows”: any block can go anywhere in the cache must compare with all tags in entire cache to see if data is there

CS 430 Computer Architecture 14 Fully Associative Cache (2/3) °Fully Associative Cache (e.g., 32 B block) compare tags in parallel Byte Offset : Cache Data B : Cache Tag (27 bits long) Valid : B 1B 31 : Cache Tag = = = = = :

CS 430 Computer Architecture 15 Fully Associative Cache (3/3) °Benefit of Fully Assoc Cache no Conflict Misses (since data can go anywhere) °Drawbacks of Fully Assoc Cache need hardware comparator for every single entry: if we have a 64KB of data in cache with 4B entries, we need 16K comparators: infeasible

CS 430 Computer Architecture 16 Third Type of Cache Miss °Capacity Misses miss that occurs because the cache has a limited size miss that would not occur if we increase the size of the cache sketchy definition, so just get the general idea °This is the primary type of miss for Fully Associate caches.

CS 430 Computer Architecture 17 General Course Philosophy °Take variety of undergrad courses now to get introduction to areas Can learn advanced material on own later once know vocabulary °Who knows what you will work on over a 40 year career?

CS 430 Computer Architecture 18 A bit more philosophy General Philosophy Take courses from great teachers! If many good teachers: My recommendations °CS169 Software Engineering Everyone writes programs, even HW designers Often programs are written in groups  learn skill now in school (before it counts) °CS162 Operating Systems All special-purpose HW will run a layer of SW that uses processes and concurrent programming; CS162 is the closest thing °EE122 Introduction to Communication Networks World is getting connected; communications must play major role

CS 430 Computer Architecture 19 If many good teachers: Courses to consider °E190 Technical Communication Talent in writing and speaking critical for success Now required for EECS majors °CS 150 Lab Hardware Design Hands on HW design °CS 152 Design a Computer °CS 186 Understand databases Information more important now than computation?

CS 430 Computer Architecture 20 N-Way Set Associative Cache (1/4) °Memory address fields: Tag: same as before Offset: same as before Index: points us to the correct “row” (called a set in this case) °So what’s the difference? each set contains multiple blocks once we’ve found correct set, must compare with all tags in that set to find our data

CS 430 Computer Architecture 21 N-Way Set Associative Cache (2/4) °Summary: cache is direct-mapped with respect to sets each set is fully associative basically N direct-mapped caches working in parallel: each has its own valid bit and data

CS 430 Computer Architecture 22 N-Way Set Associative Cache (3/4) °Given memory address: Find correct set using Index value. Compare Tag with all Tag values in the determined set. If a match occurs, it’s a hit, otherwise a miss. Finally, use the offset field as usual to find the desired data within the desired block.

CS 430 Computer Architecture 23 N-Way Set Associative Cache (4/4) °What’s so great about this? even a 2-way set assoc cache avoids a lot of conflict misses hardware cost isn’t that bad: only need N comparators °In fact, for a cache with M blocks, it’s Direct-Mapped if it’s 1-way set assoc it’s Fully Assoc if it’s M-way set assoc so these two are just special cases of the more general set associative desgin

CS 430 Computer Architecture 24 Block Replacement Policy (1/2) °Direct-Mapped Cache: index completely specifies position which position a block can go in on a miss °N-Way Set Assoc (N > 1): index specifies a set, but block can occupy any position within the set on a miss °Fully Associative: block can be written into any position °Question: if we have the choice, where should we write an incoming block?

CS 430 Computer Architecture 25 Block Replacement Policy (2/2) °Solution: If there are any locations with valid bit off (empty), then usually write the new block into the first one. If all possible locations already have a valid block, we must pick a replacement policy: rule by which we determine which block gets “cached out” on a miss.

CS 430 Computer Architecture 26 Block Replacement Policy: LRU °LRU (Least Recently Used) Idea: cache out block which has been accessed (read or write) least recently Pro: temporal locality => recent past use implies likely future use: in fact, this is a very effective policy Con: with 2-way set assoc, easy to keep track (one LRU bit); with 4-way or greater, requires complicated hardware and much time to keep track of this

CS 430 Computer Architecture 27 Block Replacement Example °We have a 2-way set associative cache with a four word total capacity and one word blocks. We perform the following word accesses (ignore bytes for this problem): 0, 2, 0, 1, 4, 0, 2, 3, 5, 4 How many hits and how many misses will there for the LRU block replacement policy?

CS 430 Computer Architecture 28 Block Replacement Example: LRU °Addresses 0, 2, 0, 1, 4, 0,... 0 lru 2 1 loc 0loc 1 4 lru set 0 set 1 0 set 0 set 1 02 set 0 set 1 02 lru set 0 set 1 set 0 set lru set 0 set lru 0: miss, bring into set 0 (loc 0) 2: miss, bring into set 0 (loc 1) 0: hit 1: miss, bring into set 1 (loc 0) 4: miss, bring into set 0 (loc 1, replace 2) 0: hit

CS 430 Computer Architecture 29 Ways to reduce miss rate °Larger cache limited by cost and technology hit time of first level cache < cycle time °More places in the cache to put each block of memory - associativity fully-associative -any block any line k-way set associated -k places for each block -direct map: k=1

CS 430 Computer Architecture 30 Big Idea °How chose between options of associativity, block size, replacement policy? °Design against a performance model Minimize: Average Access Time = Hit Time + Miss Penalty x Miss Rate influenced by technology and program behavior °Create the illusion of a memory that is large, cheap, and fast - on average

CS 430 Computer Architecture 31 Example °Assume Hit Time = 1 cycle Miss rate = 5% Miss penalty = 20 cycles °Avg mem access time = x 20 = 2 cycle

CS 430 Computer Architecture 32 Improving Miss Penalty °When caches first became popular, Miss Penalty ~ 10 processor clock cycles °Today 1000 MHz Processor (1 ns per clock cycle) and 100 ns to go to DRAM  100 processor clock cycles! Proc $2$2 DRAM $ MEM Solution: another cache between memory and the processor cache: Second Level (L2) Cache

CS 430 Computer Architecture 33 Analyzing Multi-level cache hierarchy Proc $2$2 DRAM $ L1 hit time L1 Miss Rate L1 Miss Penalty Avg Mem Access Time = L1 Hit Time + L1 Miss Rate * L1 Miss Penalty L1 Miss Penalty = L2 Hit Time + L2 Miss Rate * L2 Miss Penalty Avg Mem Access Time = L1 Hit Time + L1 Miss Rate * (L2 Hit Time + L2 Miss Rate * L2 Miss Penalty ) L2 hit time L2 Miss Rate L2 Miss Penalty

CS 430 Computer Architecture 34 Typical Scale °L1 size: tens of KB hit time: complete in one clock cycle miss rates: 1-5% °L2: size: hundreds of KB hit time: few clock cycles miss rates: 10-20% °L2 miss rate is fraction of L1 misses that also miss in L2 why so high?

CS 430 Computer Architecture 35 Example (cont) °Assume L1 Hit Time = 1 cycle L1 Miss rate = 5% L2 Hit Time = 5 cycles L2 Miss rate = 15% (% L1 misses that miss) L2 Miss Penalty = 100 cycles °L1 miss penalty = * 100 = 20 °Avg mem access time = x 20 = 2 cycle

CS 430 Computer Architecture 36 Example: without L2 cache °Assume L1 Hit Time = 1 cycle L1 Miss rate = 5% L1 Miss Penalty = 100 cycles °Avg mem access time = x 100 = 6 cycles °3x faster with L2 cache

CS 430 Computer Architecture 37 What to do on a write hit? °Write-through update the word in cache block and corresponding word in memory °Write-back update word in cache block allow memory word to be “stale” => add ‘dirty’ bit to each line indicating that memory needs to be updated when block is replaced => OS flushes cache before I/O !!! °Performance trade-offs?

CS 430 Computer Architecture 38 Things to Remember (1/2) °Caches are NOT mandatory: Processor performs arithmetic Memory stores data Caches simply make data transfers go faster °Each level of memory hierarchy is just a subset of next higher level °Caches speed up due to temporal locality: store data used recently °Block size > 1 word speeds up due to spatial locality: store words adjacent to the ones used recently

CS 430 Computer Architecture 39 Things to Remember (2/2) °Cache design choices: size of cache: speed v. capacity direct-mapped v. associative for N-way set assoc: choice of N block replacement policy 2nd level cache? Write through v. write back? °Use performance model to pick between choices, depending on programs, technology, budget,...