4.2 Probability Models. We call a phenomenon random if individual outcomes are uncertain but there is nonetheless a regular distribution of outcomes in.

Slides:



Advertisements
Similar presentations
Probability: The Study of Randomness
Advertisements

MAT 103 Probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing,
Chapter 2 Probability. 2.1 Sample Spaces and Events.
Randomness and Probability
Section 5.1 and 5.2 Probability
Chapter 4 Probability and Probability Distributions
Section 2 Union, Intersection, and Complement of Events, Odds
MAT 103 Probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing,
Independence and the Multiplication Rule
AP Statistics Section 6.2 A Probability Models
In this chapter we introduce the basics of probability.
1 1 PRESENTED BY E. G. GASCON Introduction to Probability Section 7.3, 7.4, 7.5.
1 Chapter 6: Probability— The Study of Randomness 6.1The Idea of Probability 6.2Probability Models 6.3General Probability Rules.
Chapter 4 Lecture 2 Section: 4.3. Addition Rule We will now consider compound events. Previously we considered simple events. Compound Event: is any event.
Fundamentals of Probability
Section 5.2 The Addition Rule and Complements
Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 2 Probability.
Sets, Combinatorics, Probability, and Number Theory Mathematical Structures for Computer Science Chapter 3 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesProbability.
5.1 Basic Probability Ideas
“PROBABILITY” Some important terms Event: An event is one or more of the possible outcomes of an activity. When we toss a coin there are two possibilities,
Probability. An experiment is any process that allows researchers to obtain observations and which leads to a single outcome which cannot be predicted.
Sample space The set of all possible outcomes of a chance experiment –Roll a dieS={1,2,3,4,5,6} –Pick a cardS={A-K for ♠, ♥, ♣ & ♦} We want to know the.
1 Probability. 2 Today’s plan Probability Notations Laws of probability.
Copyright © Cengage Learning. All rights reserved. 4 Probability.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 12.6 OR and AND Problems.
Probability—outline: IIntroduction to Probability ASatisfactory outcomes vs. total outcomes BBasic Properties CTerminology IICombinatory Probability AThe.
Chapter 1:Independent and Dependent Events
Introduction to Probability. 5.1 Experiments, Outcomes, Events, and Sample Spaces Sample space - The set of all possible outcomes for an experiment Roll.
Basic Probability Rules Let’s Keep it Simple. A Probability Event An event is one possible outcome or a set of outcomes of a random phenomenon. For example,
Lesson 6 – 2b Probability Models Part II. Knowledge Objectives Explain what is meant by random phenomenon. Explain what it means to say that the idea.
WRITE DOWN 5 WAYS IN WHICH YOU SEE/USE PROBABILITY IN EVERY DAY LIFE.
Review Homework pages Example: Counting the number of heads in 10 coin tosses. 2.2/
5.1 Randomness  The Language of Probability  Thinking about Randomness  The Uses of Probability 1.
Probability Basic Concepts Start with the Monty Hall puzzle
Section 2 Union, Intersection, and Complement of Events, Odds
Probability Basics Section Starter Roll two dice and record the sum shown. Repeat until you have done 20 rolls. Write a list of all the possible.
Sixth lecture Concepts of Probabilities. Random Experiment Can be repeated (theoretically) an infinite number of times Has a well-defined set of possible.
Probability Rules In the following sections, we will transition from looking at the probability of one event to the probability of multiple events (compound.
Do Now. Introduction to Probability Objective: find the probability of an event Homework: Probability Worksheet.
+ Chapter 5 Overview 5.1 Introducing Probability 5.2 Combining Events 5.3 Conditional Probability 5.4 Counting Methods 1.
5-Minute Check on Section 6-2a Click the mouse button or press the Space Bar to display the answers. 1.If you have a choice from 6 shirts, 5 pants, 10.
Probability. 3.1 Events, Sample Spaces, and Probability Sample space - The set of all possible outcomes for an experiment Roll a die Flip a coin Measure.
Chapter 10 – Data Analysis and Probability 10.7 – Probability of Compound Events.
Probability theory is the branch of mathematics concerned with analysis of random phenomena. (Encyclopedia Britannica) An experiment: is any action, process.
Probability. Randomness When we produce data by randomized procedures, the laws of probability answer the question, “What would happen if we did this.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 5 Probability: What Are the Chances? 5.2.
Warm Up: Quick Write Which is more likely, flipping exactly 3 heads in 10 coin flips or flipping exactly 4 heads in 5 coin flips ?
Probability 9.8. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Definition: Experiment Any activity with an unpredictable results.
Probability. Definitions Probability: The chance of an event occurring. Probability Experiments: A process that leads to well- defined results called.
Probability Models Section 6.2. The Language of Probability What is random? What is random? Empirical means that it is based on observation rather than.
1 What Is Probability?. 2 To discuss probability, let’s begin by defining some terms. An experiment is a process, such as tossing a coin, that gives definite.
Section 5.1 and 5.2 Probability
Essential Ideas for The Nature of Probability
Adding Probabilities 12-5
9.8 Probability Basic Concepts
What Is Probability?.
Chapter 4 Probability Concepts
Subtopic : 10.1 Events and Probability
What is Probability? Quantification of uncertainty.
Probability Part 2.
Probability Normal Distribution Sampling and Sample size
Definitions: Random Phenomenon:
Probability—outline:
Section 6.2 Probability Models
Combination and Permutations Quiz!
Mr. Reider AP Stat November 18, 2010
Digital Lesson Probability.
CHAPTER 5 Probability: What Are the Chances?
Chapter 4 Lecture 2 Section: 4.3.
Presentation transcript:

4.2 Probability Models

We call a phenomenon random if individual outcomes are uncertain but there is nonetheless a regular distribution of outcomes in a large number of repetitions.

Experiments Consider tossing a fair coin 5 times. Let H represent obtaining a head and T represent obtaining a tail. Then one possible outcome is HHTHT. This is an example of an experiment; that is, any activity that yields a result or an outcome. A survey with yes/no/undecided outcomes is an experiment.

Sample Space If we consider the coin tossing experiment mentioned above, the possible outcomes are HHHHH, HHHHT, HHHTH, HHTHH, HTHHH, THHHH, HHHTT, HHTHT, HTHHT, etc. The collection of all possible distinct outcomes that can occur when an experiment is performed is called the sample space. The sample space must have the property that when the experiment is performed, exactly one of these outcomes must occur. We may wish to give the sample space a name (say S) and we usually write the sample space inside of brackets. In the case of a single toss of a coin, the sample space would be written S={H,T}.

Events An event is a subset of the sample space. An event can be a single outcome or several. In the case where the event is a single outcome, we call this a simple event. If we let S={H,T}, then an event can be H or TTTTH. If we let S={HHHHH, HHHHT,HHHTH,HHTHH, …} then the event TTTTH is simple.

What is probability? Suppose that A is some event. The probability of A, denoted P(A), is the expected proportion of occurrences of A if the experiment were to be repeated many times. In other words, if S is the sample space and A is an event then

Suppose we roll a fair die 2 times. What is the probability that the product of the two rolls is divisible by 3? This requires finding not only the size of the sample space, but also the number of outcomes that satisfy our condition. We’ll use brute force. S={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2, 3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6 ),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}

Listing out all possibilities and then counting one by one is admittedly not a very good way of doing things. Much of what we discuss in the sections on probability will therefore be concerned with convenient was to count. How many distinct strings comprised of three letters can be made out of the 26 letters of the alphabet?

Multiplication Rule This leads us to the Fundamental Principle of Counting or the Multiplication Rule: If Task 1 can be performed in n ways and Task 2 can be performed in m ways, then Task 1 and Task 2 can be performed together in nm ways. How many ways are there to toss a fair die 5 times with each roll showing a different number than the previous rolls?

We have looked at P(A); that is, the probability of a single event A taking place e.g. when rolling a die 5 times, what is the probability that the sum of the 5 rolls will be divisible by 4? Call this event A. Now let B be the event of rolling a die 5 times and obtaining an even number on every roll. What is the probability of both A and B happening? Or what is the probability that at least one of A or B happens? Or what is the probability that A does NOT happen? These are compound events.

Language, Truth, and Logic Let A and B be events from a sample space S. A or B is the event that either A occurs or B occurs or both. This event is usually denoted AυB, read A union B or A or B. A and B is the event that both A occurs and B occurs at the same time. This event is usually denoted A∩B, read A intersect B or A and B. The complement of A is the event that an outcome in S that is NOT in A will occur. The event is denoted Ā, read the complement of A. We may illustrate these with Venn diagrams.

Disjoint Events Consider a deck of 52 playing cards (13 spades, 13 clubs, 13 hearts, 13 diamonds) and consider an experiment where we draw one card at random. Let E be the event of drawing a black card with an even value (2,4,6,8,10) and D be the event of drawing a diamond. What is the probability of E υ D (E or D)? Events A and B are disjoint events if they can not occur together when the experiment is performed.

The Addition Rule Suppose A and B are disjoint events. Then P(A or B)=P(A)+P(B). If C is a third event which is mutually exclusive with both A and B, then P(A or B or C)= P(A)+P(B)+P(C) etc. If a pair of dice is rolled, find the probability of rolling a double or getting a sum of 9.

Independent events Consider an experiment where a card is randomly drawn from a deck (52 cards), recorded, replaced, the deck is shuffled, and another card is drawn. Let A be the event of drawing a face card (king, queen, jack) on the first draw and B be the event of drawing a red card on the second draw. What is the probability of A and B?

Events A and B are said to be independent if the occurrence of one has no effect on the probability of the occurrence of the other. Suppose A and B are independent events. Then P(A and B)=P(A)P(B). Suppose two fair dice are rolled. What is the probability that the first one will show an even number and the second one will show an odd number? The Monty Hall Problem

Complementary Events Let A be an event. Then Ā is any event in S which is not in A. Hence P(A)+P(Ā)=1 and so P(Ā)=1-P(A). This fact can often make problems easier. Suppose we roll three 20-sided dice (we’re playing D & D). What is the probability that no single die will show a 20?