00 01 10 11 s[1] 00 11 u 1 /c 1 (1) c 1 (2) 00 01 10 11 s[2] 00 11 01 10 u 2 /c 2 (1) c 2 (2) 00 01 10 11 s[3] 00 11 10 01 00 11 10 u 3 /c 3 (1) c 3 (2)

Slides:



Advertisements
Similar presentations
1 The 2-to-4 decoder is a block which decodes the 2-bit binary inputs and produces four output All but one outputs are zero One output corresponding to.
Advertisements

Base Fundamentals Beach Cities Robotics – Team 294 Andrew Keisic June 2008.
Alexis Carulli CCB Project Notch Regulation of Intestinal Crypt Dynamics.
Lecture 4 More Examples of Karnaugh Map. Logic Reduction Using Karnaugh Map Create an Equivalent Karnaugh Map Each circle must be around a power of two.
s[0]s[1] s[2]s[3]s[4]
Part 4 b Forward-Backward Algorithm & Viterbi Algorithm CSE717, SPRING 2008 CUBS, Univ at Buffalo.
Tuesday, November 12 Analysis of Variance. Tuesday, November 12 The Analysis of Variance.
22-s02 27-s02 25-s04 20-s03 20-s06,7 28-s01 20-s04 22-s01 27-s01 20-s05.
Multiplexers Module M6.1 Section 6.4. Multiplexers A 4-to-1 MUX TTL Multiplexer A 2-to-1 MUX.
Answer to exercises(2) P74, 2.1 (a) =6B 16 (b) = (d) = (f) F3A5 8 =
Tuesday, November 13 Analysis of Variance.
ON-LINE SCHEDULING AND W.I.P. REGULATION Jean-Marie PROTH.
A5/1 A5/1 consists of 3 shift registers X: 19 bits (x18,x17,x16, …,x0)
Wednesday, Nov. 28 Analysis of Variance. Wednesday, Nov. 28 The Analysis of Variance.
Chapter2 Digital Components Dr. Bernard Chen Ph.D. University of Central Arkansas Spring 2009.
CSCE 452 Intro to Robotics Question Set 3 – Inverse Kinematics 1.
Warm Up 1. 2(w + 1) 2. 3x(x2 – 4) 2w + 2 3x3 – 12x 3. 4h2 and 6h 2h
Interval Estimation of System Dynamics Model Parameters Spivak S.I. – prof., Bashkir State University Kantor O.G. – senior staff scientist, Institute of.
For more info visit at For more info visit at
Ken Youssefi Mechanical & Aerospace Engineering Dept, SJSU.
Chapter Factoring by GCF.
Phosphorylation of the Tomato Β-Subunit of the SnRK Complex by Adi3 and its Possible Role in Sugar Signaling JULIAN AVILA-PACHECO.
Read Only Memory DC A0A0 A b1b1 b2b2 Programmable ROM DC A0A0 A v b1b1 b2b Fuse Mask-programmed ROM.
“Secure” migration to host identity based networks Kristian Slavov, Patrik Salmela Ericsson Research, NomadicLab NordicHIP
 Geometric mean of any n numbers is:  Find the geometric mean of the following list of numbers. A. 4, 6 B. 3, 5, 9 C. 4, 8, 10, 12.
Drivetrains Beach Cities Robotics – Team 294 Andrew Keisic June 2008.
© 2009 Pearson Education, Upper Saddle River, NJ All Rights ReservedFloyd, Digital Fundamentals, 10 th ed Digital Logic Design Dr. Oliver Faust.
Unit 1: The World in Spatial Terms Lesson 8: Reading a Road Map.
1 Karnaugh Map Method Truth Table -TO- K-Map Y0101Y0101 Z1011Z1011 X0011X0011 minterm 0  minterm 1  minterm 2  minterm 3 
Myoglobin (Mb) and Hemoglobin (Hb) have related, but different, roles in the body Hemoglobin: Found in red blood cells Promotes diffusion of O 2 throughout.
Binary Lesson 1 Nybbles. Base Ten Normal Numbers Normal Numbers Each place has one of these values: Each place has one of these values:
30 ° 60 ° s S2S2 S√3 2 A= s 2 √3 4 A= s 2 √3 4 S= 3 A= 3 2 √3 4 A= 9√3 4 A≈ 3.9.
Multiplexer.
Binary Lesson 4a Hexadecimal and Binary Practice2.
Sbcglobal Customer Service With Short Wait
Tissue Types in the Human Body
Binary Lesson 1 Nybbles.
Simplified IDEA Cryptography and Network Security.
The Best Way To Lose Weight Naturally - f9health.com
Sample Presentation. Slide 1 Info Slide 2 Info.
1 times equals 4 2 times equals 8 3 times equals 12 And 4 times 4 is 16 5 times is 20 And 6 fours are 24 7 fours -----
,..,_ -, =.. t :: ;... t---aM 0 d -...c­ " ss ''- !j!j ! )
'. \s\s I. '.. '... · \ \ \,, I.
Binary Lesson 1 Nybbles.
IP v6 Address Space four time the # of bits as v4 # of addresses:
Binary Lesson 1 Nybbles.
Binary Lesson 3 Hexadecimal
Binary Lesson 2 Bytes.
محاسبات عددی و برنامه نویسی
Before: February 5, 2018 Factor each polynomial. Check your answer.
Stat Lab 6 Parameter Estimation.
Binary Lesson 2 Bytes.
Binary Lesson 3 Hexadecimal
Binary Lesson 3 Hexadecimal
Setting Up Your Personal BIT116 Workspace
No s are sent on SI faults
Binary Lesson 2 Bytes.
Platelet-derived growth factor receptors (PDGFRs) and ligand patterns.
. دتوزد،جطنه خهخههههههه... ،كزطظطظس، سء Ss s.
' '· \ ·' ,,,,
Binary Lesson 3 Hexadecimal
Four seasons T T P 2012.
From: The Role of the New β-Blockers in Treating Cardiovascular Disease Am J Hypertens. 2005;18(S6):169S-176S. doi: /j.amjhyper Am J.
Binary Lesson 4 Hexadecimal and Binary Practice
Year 2 Spring Term Week 5 Lesson 4
Year 2 Spring Term Week 5 Lesson 4
Binary Lesson 1 Nybbles.
Statistical Inference for the Mean: t-test
Jeopardy N, NS, O P.F.A. M G, SS D.A.P. Q $100 Q $100 Q $100 Q $100
Binary Lesson 1 Nybbles.
Presentation transcript:

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] /c 5 (1) c 5 (2) s[6] /c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1,-1

s[1] 11 u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] /c 5 (1) c 5 (2) s[6] /c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1,-1 5.5

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] /c 5 (1) c 5 (2) s[6] /c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1,

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] /c 5 (1) c 5 (2) s[6] /c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1,

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] /c 5 (1) c 5 (2) s[6] /c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1,

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1,

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1, α0α

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1, α0α α1α1

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1, α0α α1α

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1, α0α α1α α2α

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1, α0α α1α α2α α3α

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1, α0α α1α α2α α3α α4α

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1, α0α α1α α2α α3α α4α α5α α6α

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1, α0α α1α α2α α3α α4α α5α α6α β6β

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1, α0α α1α α2α α3α α4α α5α α6α β6β β5β

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1, α0α α1α α2α α3α α4α α5α α6α β6β β5β β4β

s[1] u 1 /c 1 (1) c 1 (2) s[2] u 2 /c 2 (1) c 2 (2) s[3] u 3 /c 3 (1) c 3 (2) s[4] u 4 /c 4 (1) c 4 (2) s[5] 0/c 5 (1) c 5 (2) s[6] 0/c 6 (1) c 6 (2) s[7] y 1, y 2 =0.9,0.8y 3, y 4 =-0.1,0.5y 5, y 6 =0.3,0.2 y 7, y 8 =-2,-2y 9, y 10 =-2,2y 11, y1 2 =-1, α0α α1α α2α α3α α4α α5α α6α β6β β5β β4β β3β

s[1] y 1, y 2 =0.9,0.8 u 1 /c 1 (1) c 1 (2) 1 α0α0 β0β s[2] y 3, y 4 =-0.1,0.5 u 2 /c 2 (1) c 2 (2) 5.5 α1α1 β1β s[3] y 5, y 6 =0.3,0.2 u 3 /c 3 (1) c 3 (2) 8.2 α2α2 β2β s[4] y 7, y 8 =-2,-2 u 4 /c 4 (1) c 4 (2) 13.7 α3α3 β3β s[5] y 9, y 10 =-2,2 0/c 5 (1) c 5 (2) 188 α4α4 β4β s[6] y 11, y1 2 =-1,-1 0/c 6 (1) c 6 (2) 197 α5α5 β5β s[7] α6α6 β6β

s[1] y 1, y 2 =0.9,0.8 u 1 /c 1 (1) c 1 (2) 1 α0α0 β0β s[2] y 3, y 4 =-0.1,0.5 u 2 /c 2 (1) c 2 (2) 5.5 α1α1 β1β s[3] y 5, y 6 =0.3,0.2 u 3 /c 3 (1) c 3 (2) 8.2 α2α2 β2β s[4] y 7, y 8 =-2,-2 u 4 /c 4 (1) c 4 (2) 13.7 α3α3 β3β s[5] y 9, y 10 =-2,2 0/c 5 (1) c 5 (2) 188 α4α4 β4β s[6] y 11, y1 2 =-1,-1 0/c 6 (1) c 6 (2) 197 α5α5 β5β s[7] α6α6 β6β

s[1] y 1, y 2 =0.9,0.8 u 1 /c 1 (1) c 1 (2) 1 α0α0 β0β s[2] y 3, y 4 =-0.1,0.5 u 2 /c 2 (1) c 2 (2) 5.5 α1α1 β1β s[3] y 5, y 6 =0.3,0.2 u 3 /c 3 (1) c 3 (2) 8.2 α2α2 β2β s[4] y 7, y 8 =-2,-2 u 4 /c 4 (1) c 4 (2) 13.7 α3α3 β3β s[5] y 9, y 10 =-2,2 0/c 5 (1) c 5 (2) 188 α4α4 β4β s[6] y 11, y1 2 =-1,-1 0/c 6 (1) c 6 (2) 197 α5α5 β5β s[7] α6α6 β6β

s[1] y 1, y 2 =0.9,0.8 u 1 /c 1 (1) c 1 (2) 1 α0α0 β0β s[2] y 3, y 4 =-0.1,0.5 u 2 /c 2 (1) c 2 (2) 5.5 α1α1 β1β s[3] y 5, y 6 =0.3,0.2 u 3 /c 3 (1) c 3 (2) 8.2 α2α2 β2β s[4] y 7, y 8 =-2,-2 u 4 /c 4 (1) c 4 (2) 13.7 α3α3 β3β s[5] y 9, y 10 =-2,2 0/c 5 (1) c 5 (2) 188 α4α4 β4β s[6] y 11, y1 2 =-1,-1 0/c 6 (1) c 6 (2) 197 α5α5 β5β s[7] α6α6 β6β

s[1] y 1, y 2 =0.9,0.8 u 1 /c 1 (1) c 1 (2) 1 α0α0 β0β s[2] y 3, y 4 =-0.1,0.5 u 2 /c 2 (1) c 2 (2) 5.5 α1α1 β1β s[3] y 5, y 6 =0.3,0.2 u 3 /c 3 (1) c 3 (2) 8.2 α2α2 β2β s[4] y 7, y 8 =-2,-2 u 4 /c 4 (1) c 4 (2) 13.7 α3α3 β3β s[5] y 9, y 10 =-2,2 0/c 5 (1) c 5 (2) 188 α4α4 β4β s[6] y 11, y1 2 =-1,-1 0/c 6 (1) c 6 (2) 197 α5α5 β5β s[7] α6α6 β6β

00 s[0]s[1] 00 z[0], z[1]=0.9, s[2] z[2], z[3]=-0.1, z[4], z[5]=0.3,0.2 s[3]s[4] z[6], z[7]=-2, s[5]s[6] z[8], z[9]=-2,2z[10], z[11]=-1, Viterbi estimate of four info bits: 0001

s[1] y 1, y 2 =0.9,0.8 u 1 /c 1 (1) c 1 (2) 1 α0α0 β0β s[2] y 3, y 4 =-0.1,0.5 u 2 /c 2 (1) c 2 (2) 5.5 α1α1 β1β s[3] y 5, y 6 =0.3,0.2 u 3 /c 3 (1) c 3 (2) 8.2 α2α2 β2β s[4] y 7, y 8 =-2,-2 u 4 /c 4 (1) c 4 (2) 13.7 α3α3 β3β s[5] y 9, y 10 =-2,2 0/c 5 (1) c 5 (2) 188 α4α4 β4β s[6] y 11, y1 2 =-1,-1 0/c 6 (1) c 6 (2) 197 α5α5 β5β s[7] α6α6 β6β

s[1] y 1, y 2 =0.9,0.8 u 1 /c 1 (1) c 1 (2) 0 α0α0 β0β0 -C s[2] y 3, y 4 =-0.1,0.5 u 2 /c 2 (1) c 2 (2) 1.7 α1α1 β1β C C C s[3] y 5, y 6 =0.3,0.2 u 3 /c 3 (1) c 3 (2) 2.1 α2α2 β2β s[4] y 7, y 8 =-2,-2 u 4 /c 4 (1) c 4 (2) 2.6 α3α3 β3β s[5] y 9, y 10 =-2,2 0/c 5 (1) c 5 (2) 5.2 α4α4 β4β s[6] y 11, y1 2 =-1,-1 0/c 6 (1) c 6 (2) 5.3 α5α5 β5β C s[7] 12.6 α6α6 β6β6 0 -C

s[1] y 1, y 2 =0.9,0.8 u 1 /c 1 (1) c 1 (2) 0 α0α0 β0β0 -C s[2] y 3, y 4 =-0.1,0.5 u 2 /c 2 (1) c 2 (2) 1.7 α1α1 β1β C C C s[3] y 5, y 6 =0.3,0.2 u 3 /c 3 (1) c 3 (2) 2.1 α2α2 β2β s[4] y 7, y 8 =-2,-2 u 4 /c 4 (1) c 4 (2) 2.6 α3α3 β3β s[5] y 9, y 10 =-2,2 0/c 5 (1) c 5 (2) 5.2 α4α4 β4β s[6] y 11, y1 2 =-1,-1 0/c 6 (1) c 6 (2) 5.3 α5α5 β5β C s[7] 12.6 α6α6 β6β6 0 -C

s[1] y 1, y 2 =0.9,0.8 u 1 /c 1 (1) c 1 (2) 0 α0α0 β0β0 -C s[2] y 3, y 4 =-0.1,0.5 u 2 /c 2 (1) c 2 (2) 1.7 α1α1 β1β C C C s[3] y 5, y 6 =0.3,0.2 u 3 /c 3 (1) c 3 (2) 2.1 α2α2 β2β s[4] y 7, y 8 =-2,-2 u 4 /c 4 (1) c 4 (2) 2.6 α3α3 β3β s[5] y 9, y 10 =-2,2 0/c 5 (1) c 5 (2) 5.2 α4α4 β4β s[6] y 11, y1 2 =-1,-1 0/c 6 (1) c 6 (2) 5.3 α5α5 β5β C s[7] 12.6 α6α6 β6β6 0 -C