Patrick Gaulme Thierry Appourchaux Othman Benomar Mode identification with CoRoT and Kepler solar- like oscillation spectra 1 SOHO-GONG XXIV, Aix en Provence.

Slides:



Advertisements
Similar presentations
Bayesian inference Lee Harrison York Neuroimaging Centre 01 / 05 / 2009.
Advertisements

Corot HD A.Thoul Modeling of HD = V1449 Aql (THE only  Cephei star main target of CoRoT). Anne Thoul + Maryline Briquet, Pieter Degroote,
X-ray Astrostatistics Bayesian Methods in Data Analysis Aneta Siemiginowska Vinay Kashyap and CHASC Jeremy Drake, Nov.2005.
Pattern Recognition and Machine Learning
Stellar analysis system (SAS*) WP370 T. Appourchaux Institut d’Astrophysique Spatiale, Orsay *SAS= Special Air Service or Son Altesse Sérénissime.
1 Parametric Sensitivity Analysis For Cancer Survival Models Using Large- Sample Normal Approximations To The Bayesian Posterior Distribution Gordon B.
Asteroseismology of solar-type stars Revolutionizing the study of solar-type stars Hans Kjeldsen, Aarhus University.
Markov-Chain Monte Carlo
CSC321: 2011 Introduction to Neural Networks and Machine Learning Lecture 10: The Bayesian way to fit models Geoffrey Hinton.
A ground-based velocity campaign on Procyon Tim Bedding (Univ. Sydney) and about 50 others.
Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.
Symposium CoRoT 2009 – Cité Universitaire – 2 February 2009 Analysis of power spectra of Sun-like stars using a Bayesian Approach Thierry Appourchaux Symposium.
Exoplanet- Asteroseismology Synergies Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK EAHS2012, Oxford, 2012 March 15.
GLAST Science Support CenterAugust 9, 2004 Likelihood Analysis of LAT Data James Chiang (GLAST SSC – SLAC)
Computing the Posterior Probability The posterior probability distribution contains the complete information concerning the parameters, but need often.
Paper Discussion: “Simultaneous Localization and Environmental Mapping with a Sensor Network”, Marinakis et. al. ICRA 2011.
T he evolved solar-type star KIC (Gemma) Gülnur Doğan, Aarhus University Michael Thompson, Univ. of Sheffield / HAO, NCAR and the KASC WG#1.
G. Cowan Lectures on Statistical Data Analysis 1 Statistical Data Analysis: Lecture 10 1Probability, Bayes’ theorem, random variables, pdfs 2Functions.
Bayesian Analysis of X-ray Luminosity Functions A. Ptak (JHU) Abstract Often only a relatively small number of sources of a given class are detected in.
Deriving and fitting LogN-LogS distributions Andreas Zezas Harvard-Smithsonian Center for Astrophysics.
Machine Learning CMPT 726 Simon Fraser University
End of Chapter 8 Neil Weisenfeld March 28, 2005.
Catania 09/08SIAMOIS1/26 Benoît Mosser, for the SIAMOIS team Ground-based Doppler asteroseismology after CoRoT and Kepler.
PLAnetary Transits and Oscillations of stars Thierry Appourchaux for the PLATO Consortium
Introduction To Signal Processing & Data Analysis
July Benoît Mosser Observatoire de Paris LESIA Mixed modes in red giants: a window on stellar evolution Stellar End Products Stellar End Products:
GLAST Science Support Center June 29, 2005Data Challenge II Software Workshop GRB Analysis David Band GSFC/UMBC.
SNLS : Spectroscopy of Supernovae with the VLT (status) Grégory Sainton LPNHE, CNRS/in2p3 University Paris VI & VII Paris, France On behalf of the SNLS.
Overview G. Jogesh Babu. Probability theory Probability is all about flip of a coin Conditional probability & Bayes theorem (Bayesian analysis) Expectation,
Scientific aspects of SONG Jørgen Christensen-Dalsgaard Department of Physics and Astronomy Aarhus University.
10/9/ Studying Hybrid gamma Doradus/ delta Scuti Variable Stars with Kepler Joyce A. Guzik (for the Kepler Asteroseismic Science Consortium) Los.
Asteroseismological determination of stellar rotation axes: Feasibility study (COROT AP+CP) L. Gizon(1), G. Vauclair(2), S. Solanki(1), S. Dreizler(3)
Stellar Parameters through Analysis of the Kepler Oscillation Data Chen Jiang & Biwei Jiang Department of Astronomy Beijing Normal University 2 April 2010.
1 Statistical Distribution Fitting Dr. Jason Merrick.
ECE 8443 – Pattern Recognition ECE 8423 – Adaptive Signal Processing Objectives: Definitions Random Signal Analysis (Review) Discrete Random Signals Random.
17 May 2007RSS Kent Local Group1 Quantifying uncertainty in the UK carbon flux Tony O’Hagan CTCD, Sheffield.
Internal rotation: tools of seismological analysis and prospects for asteroseismology Michael Thompson University of Sheffield
A taste of statistics Normal error (Gaussian) distribution  most important in statistical analysis of data, describes the distribution of random observations.
Curvelet analysis of asteroseismic data: The Procyon noise-reduced MOST power spectrum R. A. García (1,2), P. Lambert (1,2), J. Ballot (2,3), S. Pires.
July 11, 2006Bayesian Inference and Maximum Entropy Probing the covariance matrix Kenneth M. Hanson T-16, Nuclear Physics; Theoretical Division Los.
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
Travis Metcalfe Space Science Institute + Stellar Astrophysics Centre Probing Stellar Activity with Kepler.
Oscillation spectra with regular patterns
Machine Learning 5. Parametric Methods.
ES 07 These slides can be found at optimized for Windows)
Bayesian Modelling Harry R. Erwin, PhD School of Computing and Technology University of Sunderland.
ESTIMATION METHODS We know how to calculate confidence intervals for estimates of  and  2 Now, we need procedures to calculate  and  2, themselves.
Anders Nielsen Technical University of Denmark, DTU-Aqua Mark Maunder Inter-American Tropical Tuna Commission An Introduction.
FIXETH LIKELIHOODS this is correct. Bayesian methods I: theory.
Ch 1. Introduction Pattern Recognition and Machine Learning, C. M. Bishop, Updated by J.-H. Eom (2 nd round revision) Summarized by K.-I.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
Overview G. Jogesh Babu. R Programming environment Introduction to R programming language R is an integrated suite of software facilities for data manipulation,
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 1: INTRODUCTION.
1 C.A.L. Bailer-Jones. Machine Learning. Data exploration and dimensionality reduction Machine learning, pattern recognition and statistical data modelling.
ESTIMATION METHODS We know how to calculate confidence intervals for estimates of  and 2 Now, we need procedures to calculate  and 2 , themselves.
Probability Theory and Parameter Estimation I
Signal processing.
Ch3: Model Building through Regression
Overview G. Jogesh Babu.
Magnetic activity of F stars
Special Topics In Scientific Computing
Markov Chain Monte Carlo
Akio Utsugi National Institute of Bioscience and Human-technology,
More about Posterior Distributions
Computing and Statistical Data Analysis / Stat 8
Where did we stop? The Bayes decision rule guarantees an optimal classification… … But it requires the knowledge of P(ci|x) (or p(x|ci) and P(ci)) We.
Pattern Recognition and Machine Learning
ESTIMATION METHODS We know how to calculate confidence intervals for estimates of  and 2 Now, we need procedures to calculate  and 2 , themselves.
LoHCo Meeting – Tucson, December 13, 2005
Presentation transcript:

Patrick Gaulme Thierry Appourchaux Othman Benomar Mode identification with CoRoT and Kepler solar- like oscillation spectra 1 SOHO-GONG XXIV, Aix en Provence

Spectral information  Global parameters amplitude and maximum amplitude frequency large spacing, small spacing splitting and inclination  Mode parameters frequency, height, width  Global fitting global parameters : splitting, inclination overlapping between modes 2 SOHO-GONG XXIV, Aix en Provence Gizon & Solanki 2003

 Power density spectrum statistics each frequency bin:  2 statistics with 2 degrees of freedom  Frequentist approach maximum likelihood estimator (MLE) model for which the data set probability is maximum likelihood: L = P(D|  ) =  i  [1/S 0 ( i )] exp[-S i /S 0 ( i )]  Bayesian approach restrict our imagination: a priori information P(  D  ) = P(  ) P(D|  )/P(D|  ) SOHO-GONG XXIV, Aix en Provence 3 Spectral information

 Posterior probability find the maximum of P(  ) P(D|  ) is enough to estimate the parameters, but the model probability (normalization term P(D|  ))  Gaussian prior P(  ) = exp[-( – prior ) 2 /   prior ]  Minimization of l = - log L MLE + ∑ [( – prior ) 2 /   prior ] easy to implement  MAP: local maxima from the input, in the prior range  MCMC: extracts the global shape of the posterior probability SOHO-GONG XXIV, Aix en Provence 4 Bayesian approach Likelihood Parameter 1 Parameter 2

 Inclination rotation-activity relationship (Noyes et al. 1984) V sin i on spectrometric measurements  Splitting rotation-activity relationship low frequency signature in the light curve power spectrum  Frequency from the smoothed power spectrum  Height about 1/7 of the maximum value of the power spectrum, for a given frequency SOHO-GONG XXIV, Aix en Provence 5 Bayesian approach

 100-days of VIRGO/SPM data  MLE estimator with no a priori information inputs: inclination = 45°, splitting = 1 µHz output: splitting = 0.81±0.07 µHz, inclination = 143±4°  Bayesian approach is implicit prior on inclination or splitting output: 0.41 µHz SOHO-GONG XXIV, Aix en Provence 6 Global fitting with MLE/MAP

 CoRoT data HD SOHO-GONG XXIV, Aix en Provence 7 Global fitting with MLE

 Height: Gaussian mode approximation (Gaulme et al. 2009) H( ) = H 0 exp[-( – 0 )/2  2 ] SOHO-GONG XXIV, Aix en Provence 8 CoRoT HD with MAP Gaulme et al. 2009

SOHO-GONG XXIV, Aix en Provence 9 Careful with that MAP Eugene Gaulme et al. 2009

SOHO-GONG XXIV, Aix en Provence 10 CoRoT HD with MCMC  Mode identification impossible in the Echelle diagram  Probability calculation with MCMC: Probability = 89% if the relative heights of the modes are not fixed Probability > % if the relative heights are fixed to the solar values Results confirmed with MLE and MAP  Angle/splitting correlated Benomar et al. 2009

MCMC  No trapping in local minima  Time consuming 3 weeks with 1 CPU for a 60-day time series with 18 overtones  Straightforward error estimate of the fitted parameters MAP  The solution depends on the initial guess  Fast to fit few hours with 1 CPU, for a 60-day time series with 18 overtones  Non trivial error estimation: Hessian calculation SOHO-GONG XXIV, Aix en Provence 11 MCMC vs MAP

 Kepler data: 1500 Solar-like light curves Large variety of “species” o Solar analogues o sub-giants Large variety of spectra o plenty of mixed modes  120 stars to fit MCMC: 7 years to fit the data with 1 CPU !  Step by step approach global parameters: max, ∆ 0,  (autocorrelation) MLE/MAP with solar analogues simplified MLE/MAP when mixed modes MCMC for peculiar cases SOHO-GONG XXIV, Aix en Provence 12 Dealing with massive data flux

SOHO-GONG XXIV, Aix en Provence 13 Dealing with massive data flux

SOHO-GONG XXIV, Aix en Provence 14 Fitting a massive data flux Spectrometric information Autocorrelation of time series Background fitting HR-like diagrams, e.g. - ∆ 0  f  max  -  f  ∆ 0) ∆ 0,* /∆  sun = (M * /M sun ) 1/2 (R * /R sun ) -3/2 max,* / max,sun = (M * /M sun ) / [(R * /R sun ) 2 (T * /T sun )] Roxburgh 2009, Mosser & Appourchaux 2009

SOHO-GONG XXIV, Aix en Provence 15 Fitting a massive data flux Spectrometric information Autocorrelation of time series Background fitting Global fitting with 2 scenarii Global fitting with no splitting no inclination Division by the best fit: mixed modes

 CoRoT: 1-2 solar-like targets per 5-month run  accurate study of individual cases  Kepler: 100 solar-like targets per 1-month run  statistical study of global parameter  accurate study of peculiar cases  Several years to exploit the whole information SOHO-GONG XXIV, Aix en Provence 16 Conclusion

Gamma-T SOHO-GONG XXIV, Aix en Provence 17