Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.

Slides:



Advertisements
Similar presentations
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
Advertisements

CMB: Sound Waves in the Early Universe Before recombination: Universe is ionized. Photons provide enormous pressure and restoring force. Photon-baryon.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Suzanne Staggs (Princeton) Rencontres de Blois, 1 June 2011 The Atacama Cosmology Telescope (ACT): Still More Cosmology from the Cosmic Microwave Background.
Marek Kowalski Moriond Cosmology The “Union” Supernova Ia Compilation and new Cosmological Constraints Marek Kowalski Humboldt Universität.
Modern Cosmology: The History of the History of the Universe Alex Drlica-Wagner SASS June 24, 2009.
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
July 7, 2008SLAC Annual Program ReviewPage 1 Future Dark Energy Surveys R. Wechsler Assistant Professor KIPAC.
Marek Kowalski Testing Dark Energy with Supernovae Bonn, Testing Dark Energy with Supernovae Supernova 1994D Marek Kowalski Universität Bonn,
What is Dark Energy? Josh Frieman Fermilab and the University of Chicago.
Falsifying Paradigms for Cosmic Acceleration Michael Mortonson Kavli Institute for Cosmological Physics University of Chicago January 22, 2009.
Lecture 1: Basics of dark energy Shinji Tsujikawa (Tokyo University of Science) ``Welcome to the dark side of the world.”
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
B12 Next Generation Supernova Surveys Marek Kowalski 1 and Bruno Leibundgut 2 1 Physikalisches Institut, Universität Bonn 2 European Southern Observatory.
Marek Kowalski PTF, Szczecin Exploding Stars, Cosmic Acceleration and Dark Energy Supernova 1994D Marek Kowalski Humboldt-Universität zu Berlin.
1 What is the Dark Energy? David Spergel Princeton University.
Progress on Cosmology Sarah Bridle University College London.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
Signe Riemer-Sørensen, University of Queensland In collaboration with C. Blake (Swinburne), D. Parkinson (UQ), T. Davis (UQ) and the WiggleZ collaboration.
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
Cosmology I & II Expanding universe Hot early universe Nucleosynthesis Baryogenesis Cosmic microwave background (CMB) Structure formation Dark matter,
The CMB and Neutrinos. We can all measure the CMB T CMB = \ K CMB approx 1% of TV noise! 400 photons/cc at 0.28 eV/cc.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Eric V. Linder (arXiv: v1). Contents I. Introduction II. Measuring time delay distances III. Optimizing Spectroscopic followup IV. Influence.
Polarization-assisted WMAP-NVSS Cross Correlation Collaborators: K-W Ng(IoP, AS) Ue-Li Pen (CITA) Guo Chin Liu (ASIAA)
TAUP 2007, Sendai, Japan 11/09/07 The Cosmological Model: an overview and an outlook Alan Heavens University of Edinburgh.
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
How can CMB help constraining dark energy? Licia Verde ICREA & Institute of space Sciences (ICE CSIC-IEEC)
Non-Gaussianity, spectral index and tensor modes in mixed inflaton and curvaton models Teruaki Suyama (Institute for Cosmic Ray Research) In collaboration.
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
Dark Energy Probes with DES (focus on cosmology) Seokcheon Lee (KIAS) Feb Section : Survey Science III.
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Cosmological Particle Physics Tamara Davis University of Queensland With Signe Riemer-Sørensen, David Parkinson, Chris Blake, and the WiggleZ team.
Constraining Cosmology with Peculiar Velocities of Type Ia Supernovae Cosmo 2007 Troels Haugbølle Institute for Physics & Astronomy,
Constraining the Lattice Fluid Dark Energy from SNe Ia, BAO and OHD 报告人: 段效贤 中国科学院国家天文台 2012 年两岸粒子物理与宇宙学研讨会.
Dark Matter and the Large Scale Structure of the Universe 暗物質及宇宙建構
Michael Doran Institute for Theoretical Physics Universität Heidelberg Time Evolution of Dark Energy (if any …)
A. Ealet, S. Escoffier, D. Fouchez, F. Henry-Couannier, S. Kermiche, C. Tao, A. Tilquin September 2012.
BAOs SDSS, DES, WFMOS teams (Bob Nichol, ICG Portsmouth)
Racah Institute of physics, Hebrew University (Jerusalem, Israel)
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
The Cosmic Microwave Background
Observational evidence for Dark Energy
1 1 Dark Energy with SNAP and other Next Generation Probes Eric Linder Berkeley Lab.
Brenna Flaugher for the DES Collaboration; DPF Meeting August 27, 2004 Riverside,CA Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO 1 Dark Energy and.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Determining cosmological parameters with the latest observational data Hong Li TPCSF/IHEP
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
First Cosmology Results from Planck Alessandro Melchiorri University of Rome La Sapienza On behalf of the Planck collaboration.
Cheng Zhao Supervisor: Charling Tao
Jochen Weller Decrypting the Universe Edinburgh, October, 2007 未来 の 暗 黒 エネルギー 実 験 の 相補性.
Theoretical Perspectives on Cosmology and Cosmic Dawn Scott Dodelson: Science Futures in the 2020s.
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
The Dark Side of the Universe L. Van Waerbeke APSNW may 15 th 2009.
Cosmological constraints on neutrino mass Francesco De Bernardis University of Rome “Sapienza” Incontro Nazionale Iniziative di Fisica Astroparticellare.
Constraining Dark Energy with Double Source Plane Strong Lenses Thomas Collett With: Matt Auger, Vasily Belokurov, Phil Marshall and Alex Hall ArXiv:
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
Observational Constraints on the Running Vacuum Model
Probing the Coupling between Dark Components of the Universe
Shintaro Nakamura (Tokyo University of Science)
Dark energy from primordial inflationary quantum fluctuations.
Precision cosmology, status and perspectives
Measurements of Cosmological Parameters
6-band Survey: ugrizy 320–1050 nm
ν Are we close to measuring the neutrino hierarchy? Filipe B. Abdalla
Presentation transcript:

Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn

2Observational cosmology - Kowalski Outline Introduction Cosmological probes Cosmological constraints

3Observational cosmology - Kowalski The standard model of cosmology: ΛCDM Ingredients of ΛCDM: Cosmological constant Cold Dark Matter Baryons 3 light neutrino flavors Ampl. of primord. fluctuations Index of power spectrum

4Observational cosmology - Kowalski The standard model of cosmology: ΛCDM Beyond the standard model: Non-Λ dark energy Hot dark matter, e.g. massive neutrinos Additional relativistic species, e.g extra neutrino species Tensor perturbations & running spectral index ⇒ physics of Inflation

5Observational cosmology - Kowalski Cosmological Probes: Selected new results

6Observational cosmology - Kowalski Cosmic Microwave Background WMAP New ground based data from: South Pole Telescope (SPT) & Atacama Cosmology Telescope (ACT) ACT – 6 m telescope Planck:

7Observational cosmology - Kowalski Cosmic Microwave Background New ground based data: from South Pole Telescope & Atacama Cosmology telescope WMAP: ? w/o forground CMB fit with forground; 4σ detections of CMB weak lensing! SPT SPT-after filter WMAP

8Observational cosmology - Kowalski Galaxy Clusters CMB footprint X-ray footprint Picture credit: ESA

9Observational cosmology - Kowalski Counting Galaxy Clusters Vikhlini et al. ApJ, 2009 Upcoming surveys: eROSITA, DES,...

10Observational cosmology - Kowalski Supernova Hubble Diagram Norm. fainter than expected  A bit brighter   M 3 year data ~300 SNe Ia 0.2<z<1 HST NIR sensitity 25 z>1 SNe Ia Supernova Cosmology Project Suzuki et al, 2011

11Observational cosmology - Kowalski Efficient HST survey for z>1 SNe Supernova Cosmology Project Suzuki et al., 2011 Supernova Cosmology Project Suzuki et al., 2011 Survey of z>0.9 galaxy clusters ⇒ SNe from cluster & field ⇒ about 2 x more efficient ⇒ enhencement of early hosts ⇒ 20 new HST SNe ⇒ 10 high quality z>1 SNe!

12Observational cosmology - Kowalski Baryon Acoustic Oscillation Acoustic „oscillation“ lengh scale from CMB visible in the distribution of galaxies ⇒ Standard ruler of cosmology. Sloan Digital Sky Survey

13Observational cosmology - Kowalski Baryon Acoustic Oscillation Acoustic „oscillation“ lengh scale from CMB visible in the distribution of galaxies ⇒ Standard ruler of cosmology. WiggleZ survey – Blake et al, 2011

14Observational cosmology - Kowalski Baryon Acoustic Oscillation Acoustic „oscillation“ lengh scale from CMB visible in the distribution of galaxies ⇒ Standard ruler of cosmology. Promising technique & much activity: BOSS, HETDEX,...

15Observational cosmology - Kowalski Cosmological Constraints: Selected new results

16Observational cosmology - Kowalski ΛCDM SNe (Union 2.1, Suzuki et. al, 2011) BAO (Percival et. al, 2010) CMB (WMAP-7 year data, 2010) and allowing for curvature: Ω k =0.002 ± Ω Λ =0.729 ± Supernova Cosmology Project Suzuki et al., 2011

17Observational cosmology - Kowalski Dark Energy cosmological constant Equation of state: p=wρ Constant w: w=-0.995±0.078 Supernova Cosmology Project Suzuki et al., 2011

18Observational cosmology - Kowalski Dark Energy cosmological constant Equation of state: p=wρ Constant w: w=-0.995±0.078 Redshift dependent w: w(a)=w 0 +(1-a) x w a No deviation from w=-1 (i.e. Λ) Λ Supernova Cosmology Project Suzuki et al., 2011

19Observational cosmology - Kowalski Constraints on Inflation parameters e.g. Chaotic Inflation (Linde, 1983) Scalar spectral index* Tensor-to-scalar ratio* Spectral tilt* n s =0.966±0.011 r<0.21 dn s /dlnk=-0.024±0.013 *SPT+ WMAP7 (Keisler et al. 2011), constraints are model dependent Power spectrum of curvature perturbations Tensor-to-scalar ratio (r)

20Observational cosmology - Kowalski Number of relativistic species (neutrinos!) SPT+WMAP7: N eff = 3.85±0.62 CMB (& Baryon Nucleosynthesis) sensitive to number of neutrino species N eff

21Observational cosmology - Kowalski Neutrino mass from CMB & large scale structure Damping of correlation power due to free streaming at epoch of radiation-matter equality: Tegmark et al Combination of CMB+BAO+H 0 : Similar mass bounds also for LSND-like sterile neutrinos e.g. Komatsu et al (2010) Hamann et al (2010)

22Observational cosmology - Kowalski Summary Cosmology today is about precision Multiple probes for highest sensitivity ΛCDM looks strong, however, physics beyond the standard model might just be around the corner Many new surveys commited, hence tremendous progress expected!

23Observational cosmology - Kowalski

24Observational cosmology - Kowalski Redshift dependent EOS A floating non-SNe bin to decouple low from high-redshift constraints Assuming step-wise constant w: