Welcome to CS262: Computational Genomics Instructor: Serafim Batzoglou TAs: Eugene Davydov Christina Pop Monday & Wednesday.

Slides:



Advertisements
Similar presentations
CS 5263 Bioinformatics Lecture 3: Dynamic Programming and Global Sequence Alignment.
Advertisements

Sequence allignement 1 Chitta Baral. Sequences and Sequence allignment Two main kind of sequences –Sequence of base pairs in DNA molecules (A+T+C+G)*
Rapid Global Alignments How to align genomic sequences in (more or less) linear time.
Lecture 8 Alignment of pairs of sequence Local and global alignment
C E N T R F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U E Alignments 1 Sequence Analysis.
Sequence Alignment.
Welcome to CS262: Computational Genomics Instructor: Serafim Batzoglou TAs: Marc Schaub Andreas Sundquist Monday & Wednesday.
Lecture 6, Thursday April 17, 2003
Sequence Alignment Tutorial #2
Lecture outline Sequence alignment Gaps and scoring matrices
Genomic Sequence Alignment. Overview Dynamic programming & the Needleman-Wunsch algorithm Local alignment—BLAST Fast global alignment Multiple sequence.
Welcome to CS262!. Goals of this course Introduction to Computational Biology  Basic biology for computer scientists  Breadth: mention many topics &
Computational Genomics Lecture 1, Tuesday April 1, 2003.
CS 5263 Bioinformatics Lecture 5: Affine Gap Penalties.
Sequence Alignment. Scoring Function Sequence edits: AGGCCTC  MutationsAGGACTC  InsertionsAGGGCCTC  DeletionsAGG. CTC Scoring Function: Match: +m Mismatch:
Developing Pairwise Sequence Alignment Algorithms Dr. Nancy Warter-Perez.
Sequence Alignment. CS262 Lecture 2, Win06, Batzoglou Complete DNA Sequences More than 300 complete genomes have been sequenced.
Developing Pairwise Sequence Alignment Algorithms Dr. Nancy Warter-Perez June 23, 2005.
Inexact Matching General Problem –Input Strings S and T –Questions How distant is S from T? How similar is S to T? Solution Technique –Dynamic programming.
Large-Scale Global Alignments Multiple Alignments Lecture 10, Thursday May 1, 2003.
Sequence Alignment Cont’d. Sequence Alignment -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC Definition Given two strings.
Reminder -Structure of a genome Human 3x10 9 bp Genome: ~30,000 genes ~200,000 exons ~23 Mb coding ~15 Mb noncoding pre-mRNA transcription splicing translation.
Sequence Alignment.
Sequence Alignment Variations Computing alignments using only O(m) space rather than O(mn) space. Computing alignments with bounded difference Exclusion.
Sequence Alignment. Before we start, administrivia Instructor: Serafim Batzoglou, CS x Office hours: Monday 2:00-3:30 TA:
Welcome to CS262: Computational Genomics Instructor: Serafim Batzoglou TAs: Marc Schaub Andreas Sundquist Monday & Wednesday.
Alignments and Comparative Genomics. Welcome to CS374! Today: Serafim: Alignments and Comparative Genomics Omkar: Administrivia.
Developing Pairwise Sequence Alignment Algorithms Dr. Nancy Warter-Perez June 23, 2004.
Sequence Alignment Cont’d. Evolution Scoring Function Sequence edits: AGGCCTC  Mutations AGGACTC  Insertions AGGGCCTC  Deletions AGG.CTC Scoring Function:
Multiple Sequence Alignments. Lecture 12, Tuesday May 13, 2003 Reading Durbin’s book: Chapter Gusfield’s book: Chapter 14.1, 14.2, 14.5,
Welcome to CS262: Computational Genomics Instructor: Serafim Batzoglou TAs: George Asimenos Andreas Sundquist Tuesday&Thursday 2:45-4:00 Skilling Auditorium.
Welcome to CS262: Computational Genomics Instructor: Serafim Batzoglou TAs: Eugene Davydov Christina Pop Monday & Wednesday.
Welcome to CS374 Algorithms in Biology. Overview Administrivia Molecular Biology and Computation  DNA, proteins, cells, evolution  Some examples of.
Sequence Alignment Slides courtesy of Serafim Batzoglou, Stanford Univ.
Developing Pairwise Sequence Alignment Algorithms Dr. Nancy Warter-Perez May 20, 2003.
UNIVERSITY OF SOUTH CAROLINA College of Engineering & Information Technology Bioinformatics Algorithms and Data Structures Chapter 11: Core String Edits.
Introduction to Bioinformatics Algorithms Sequence Alignment.
Computational Genomics Lecture 1, Tuesday April 1, 2003.
Bioinformatics Unit 1: Data Bases and Alignments Lecture 3: “Homology” Searches and Sequence Alignments (cont.) The Mechanics of Alignments.
Alignment II Dynamic Programming
Sequence Alignment Lecture 2, Thursday April 3, 2003.
Dynamic Programming. Pairwise Alignment Needleman - Wunsch Global Alignment Smith - Waterman Local Alignment.
Developing Pairwise Sequence Alignment Algorithms Dr. Nancy Warter-Perez May 10, 2005.
Recap Don’t forget to – pick a paper and – me See the schedule to see what’s taken –
Pairwise alignment Computational Genomics and Proteomics.
Sequence Alignment. CS262 Lecture 3, Win06, Batzoglou Sequence Alignment -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC Definition.
Sequence Alignment. -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC Given two strings x = x 1 x 2...x M, y = y 1 y 2 …y N,
Welcome to CS374 Algorithms in Biology
Developing Pairwise Sequence Alignment Algorithms
Sequence Alignment.
CS 5263 Bioinformatics Lecture 4: Global Sequence Alignment Algorithms.
Sequence Alignment. 2 Sequence Comparison Much of bioinformatics involves sequences u DNA sequences u RNA sequences u Protein sequences We can think of.
BIOMETRICS Module Code: CA641 Week 11- Pairwise Sequence Alignment.
Pairwise alignments Introduction Introduction Why do alignments? Why do alignments? Definitions Definitions Scoring alignments Scoring alignments Alignment.
Comp. Genomics Recitation 2 12/3/09 Slides by Igor Ulitsky.
CISC667, S07, Lec5, Liao CISC 667 Intro to Bioinformatics (Spring 2007) Pairwise sequence alignment Needleman-Wunsch (global alignment)
Pairwise alignment of DNA/protein sequences I519 Introduction to Bioinformatics, Fall 2012.
Minimum Edit Distance Definition of Minimum Edit Distance.
Advanced Algorithms and Models for Computational Biology -- a machine learning approach Computational Genomics I: Sequence Alignment Eric Xing Lecture.
Dynamic Programming Presenters: Michal Karpinski Eric Hoffstetter.
Sequence Alignment Tanya Berger-Wolf CS502: Algorithms in Computational Biology January 25, 2011.
Pairwise sequence alignment Lecture 02. Overview  Sequence comparison lies at the heart of bioinformatics analysis.  It is the first step towards structural.
1 Выравнивание двух последовательностей. 2 AGC A A A C
Sequence Similarity.
CS 5263 Bioinformatics Lecture 3: Dynamic Programming and Sequence Alignment.
4.2 - Algorithms Sébastien Lemieux Elitra Canada Ltd.
1 Sequence Alignment -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC Definition Given two strings x = x 1 x 2...x M, y = y.
Definition of Minimum Edit Distance
Pairwise sequence Alignment.
Bioinformatics Algorithms and Data Structures
Presentation transcript:

Welcome to CS262: Computational Genomics Instructor: Serafim Batzoglou TAs: Eugene Davydov Christina Pop Monday & Wednesday 11:50-1:05 James H Clark Center S361

Goals of this course Introduction to Computational Biology & Genomics  Basic concepts and scientific questions  Why does it matter?  Basic biology for computer scientists  In-depth coverage of algorithmic techniques  Current active areas of research Useful algorithms  Dynamic programming  String algorithms  HMMs and other graphical models for sequence analysis

Topics in CS262 Part 1: Basic Algorithms  Sequence Alignment & Dynamic Programming  Hidden Markov models, Context Free Grammars, Conditional Random Fields Part 2: Topics in computational genomics and areas of active research  DNA sequencing and assembly  Comparative genomics  Genes: finding genes, gene regulation  Personalized genomics

Course responsibilities Homeworks  4 challenging problem sets, 4-5 problems/pset Due at beginning of class Up to 3 late days (24-hr periods) for the quarter  Collaboration allowed – please give credit Teams of 2 or 3 students Individual writeups If individual (no team) then drop score of worst problem per problem set (Optional) Scribing  Due one week after the lecture, except special permission  Scribing grade replaces 2 lowest problems from all problem sets First-come first-serve, staff list to sign up

Reading material Books  “Biological sequence analysis” by Durbin, Eddy, Krogh, Mitchison Chapters 1-4, 6, 7-8, 9-10  “Algorithms on strings, trees, and sequences” by Gusfield Chapters 5-7, 11-12, 13, 14, 17 Papers Lecture notes

Birth of Molecular Biology DNA Phosphate Group Sugar Nitrogenous Base A, C, G, T Physicist Ornithologist

Genetics in the 20 th Century

21 st Century AGTAGCACAGACTACGACGAGA CGATCGTGCGAGCGACGGCGTA GTGTGCTGTACTGTCGTGTGTG TGTACTCTCCTCTCTCTAGTCT ACGTGCTGTATGCGTTAGTGTC GTCGTCTAGTAGTCGCGATGCT CTGATGTTAGAGGATGCACGAT GCTGCTGCTACTAGCGTGCTGC TGCGATGTAGCTGTCGTACGTG TAGTGTGCTGTAAGTCGAGTGT AGCTGGCGATGTATCGTGGT AGTAGGACAGACTACGACGAGACGAT CGTGCGAGCGACGGCGTAGTGTGCTG TACTGTCGTGTGTGTGTACTCTCCTC TCTCTAGTCTACGTGCTGTATGCGTT AGTGTCGTCGTCTAGTAGTCGCGATG CTCTGATGTTAGAGGATGCACGATGC TGCTGCTACTAGCGTGCTGCTGCGAT GTAGCTGTCGTACGTGTAGTGTGCTG TAAGTCGAGTGTAGCTGGCGATGTAT CGTGGT

Computational Biology Organize & analyze massive amounts of biological data  Enable biologists to use data  Form testable hypotheses  Discover new biology AGTAGCACAGACTACGACGAGA CGATCGTGCGAGCGACGGCGTA GTGTGCTGTACTGTCGTGTGTG TGTACTCTCCTCTCTCTAGTCT ACGTGCTGTATGCGTTAGTGTC GTCGTCTAGTAGTCGCGATGCT CTGATGTTAGAGGATGCACGAT GCTGCTGCTACTAGCGTGCTGC TGCGATGTAGCTGTCGTACGTG TAGTGTGCTGTAAGTCGAGTGT AGCTGGCGATGTATCGTGGT

Intro to Biology

Sequence Alignment

Complete DNA Sequences More than 300 complete genomes have been sequenced

Evolution

Evolution at the DNA level …ACGGTGCAGTTACCA… …AC----CAGTCCACCA… Mutation SEQUENCE EDITS REARRANGEMENTS Deletion Inversion Translocation Duplication

Evolutionary Rates OK X X Still OK? next generation

Sequence conservation implies function Alignment is the key to Finding important regions Determining function Uncovering evolutionary events

Sequence Alignment -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC Definition Given two strings x = x 1 x 2...x M, y = y 1 y 2 …y N, an alignment is an assignment of gaps to positions 0,…, N in x, and 0,…, N in y, so as to line up each letter in one sequence with either a letter, or a gap in the other sequence AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

What is a good alignment? AGGCTAGTT, AGCGAAGTTT AGGCTAGTT- 6 matches, 3 mismatches, 1 gap AGCGAAGTTT AGGCTA-GTT- 7 matches, 1 mismatch, 3 gaps AG-CGAAGTTT AGGC-TA-GTT- 7 matches, 0 mismatches, 5 gaps AG-CG-AAGTTT

Scoring Function Sequence edits: AGGCCTC  MutationsAGGACTC  InsertionsAGGGCCTC  DeletionsAGG. CTC Scoring Function: Match: +m Mismatch: -s Gap:-d Score F = (# matches)  m - (# mismatches)  s – (#gaps)  d Alternative definition: minimal edit distance “Given two strings x, y, find minimum # of edits (insertions, deletions, mutations) to transform one string to the other”

How do we compute the best alignment? AGTGCCCTGGAACCCTGACGGTGGGTCACAAAACTTCTGGA AGTGACCTGGGAAGACCCTGACCCTGGGTCACAAAACTC Too many possible alignments: >> 2 N (exercise)

Alignment is additive Observation: The score of aligningx 1 ……x M y 1 ……y N is additive Say thatx 1 …x i x i+1 …x M aligns to y 1 …y j y j+1 …y N The two scores add up: F(x[1:M], y[1:N]) = F(x[1:i], y[1:j]) + F(x[i+1:M], y[j+1:N])

Dynamic Programming There are only a polynomial number of subproblems  Align x 1 …x i to y 1 …y j Original problem is one of the subproblems  Align x 1 …x M to y 1 …y N Each subproblem is easily solved from smaller subproblems  We will show next Dynamic Programming!!!Then, we can apply Dynamic Programming!!! Let F(i, j) = optimal score of aligning x 1 ……x i y 1 ……y j F is the DP “Matrix” or “Table” “Memoization”

Dynamic Programming (cont’d) Notice three possible cases: 1.x i aligns to y j x 1 ……x i-1 x i y 1 ……y j-1 y j 2.x i aligns to a gap x 1 ……x i-1 x i y 1 ……y j - 3.y j aligns to a gap x 1 ……x i - y 1 ……y j-1 y j m, if x i = y j F(i, j) = F(i – 1, j – 1) + -s, if not F(i, j) = F(i – 1, j) – d F(i, j) = F(i, j – 1) – d

Dynamic Programming (cont’d) How do we know which case is correct? Inductive assumption: F(i, j – 1), F(i – 1, j), F(i – 1, j – 1) are optimal Then, F(i – 1, j – 1) + s(x i, y j ) F(i, j) = max F(i – 1, j) – d F(i, j – 1) – d Where s(x i, y j ) = m, if x i = y j ;-s, if not

G - AGTA A10 -2 T 0010 A-3 02 F(i,j) i = Example x = AGTAm = 1 y = ATAs = -1 d = -1 j = F(1, 1) = max{F(0,0) + s(A, A), F(0, 1) – d, F(1, 0) – d} = max{0 + 1, – 1, – 1} = 1 AAAA TTTT AAAA Procedure to output Alignment Follow the backpointers When diagonal, OUTPUT x i, y j When up, OUTPUT y j When left, OUTPUT x i

The Needleman-Wunsch Matrix x 1 ……………………………… x M y 1 ……………………………… y N Every nondecreasing path from (0,0) to (M, N) corresponds to an alignment of the two sequences An optimal alignment is composed of optimal subalignments

The Needleman-Wunsch Algorithm 1.Initialization. a.F(0, 0) = 0 b.F(0, j) = - j  d c.F(i, 0)= - i  d 2.Main Iteration. Filling-in partial alignments a.For each i = 1……M For each j = 1……N F(i – 1,j – 1) + s(x i, y j ) [case 1] F(i, j) = max F(i – 1, j) – d [case 2] F(i, j – 1) – d [case 3] DIAG, if [case 1] Ptr(i, j)= LEFT,if [case 2] UP,if [case 3] 3.Termination. F(M, N) is the optimal score, and from Ptr(M, N) can trace back optimal alignment

Performance Time: O(NM) Space: O(NM) Later we will cover more efficient methods

A variant of the basic algorithm: Maybe it is OK to have an unlimited # of gaps in the beginning and end: CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC ||||||| |||| | || || GCGAGTTCATCTATCAC--GACCGC--GGTCG Then, we don’t want to penalize gaps in the ends

Different types of overlaps Example: 2 overlapping“reads” from a sequencing project – recall Lecture 1 Example: Search for a mouse gene within a human chromosome

The Overlap Detection variant Changes: 1.Initialization For all i, j, F(i, 0) = 0 F(0, j) = 0 2.Termination max i F(i, N) F OPT = max max j F(M, j) x 1 ……………………………… x M y 1 ……………………………… y N

The local alignment problem Given two strings x = x 1 ……x M, y = y 1 ……y N Find substrings x’, y’ whose similarity (optimal global alignment value) is maximum x = aaaacccccggggtta y = ttcccgggaaccaacc

Why local alignment – examples Genes are shuffled between genomes Portions of proteins (domains) are often conserved

Cross-species genome similarity 98% of genes are conserved between any two mammals >70% average similarity in protein sequence hum_a : 57331/ mus_a : 78560/ rat_a : / fug_a : 36008/68174 hum_a : 57381/ mus_a : 78610/ rat_a : / fug_a : 36058/68174 hum_a : 57431/ mus_a : 78659/ rat_a : / fug_a : 36084/68174 hum_a : 57481/ mus_a : 78708/ rat_a : / fug_a : 36097/68174 “atoh” enhancer in human, mouse, rat, fugu fish

The Smith-Waterman algorithm Idea: Ignore badly aligning regions Modifications to Needleman-Wunsch: Initialization:F(0, j) = F(i, 0) = 0 0 Iteration:F(i, j) = max F(i – 1, j) – d F(i, j – 1) – d F(i – 1, j – 1) + s(x i, y j )

The Smith-Waterman algorithm Termination: 1.If we want the best local alignment… F OPT = max i,j F(i, j) Find F OPT and trace back 2.If we want all local alignments scoring > t ??For all i, j find F(i, j) > t, and trace back? Complicated by overlapping local alignments Waterman–Eggert ’87: find all non-overlapping local alignments with minimal recalculation of the DP matrix

Scoring the gaps more accurately Current model: Gap of length n incurs penaltyn  d However, gaps usually occur in bunches Convex gap penalty function:  (n): for all n,  (n + 1) -  (n)   (n) -  (n – 1)  (n)

Convex gap dynamic programming Initialization:same Iteration: F(i – 1, j – 1) + s(x i, y j ) F(i, j) = maxmax k=0…i-1 F(k, j) –  (i – k) max k=0…j-1 F(i, k) –  (j – k) Termination: same Running Time: O(N 2 M)(assume N>M) Space: O(NM)

Compromise: affine gaps  (n) = d + (n – 1)  e || gap gap open extend To compute optimal alignment, At position i, j, need to “remember” best score if gap is open best score if gap is not open F(i, j):score of alignment x 1 …x i to y 1 …y j if if x i aligns to y j if G(i, j):score if x i aligns to a gap after y j if H(i, j): score if y j aligns to a gap after x i V(i, j) = best score of alignment x 1 …x i to y 1 …y j d e  (n)

Needleman-Wunsch with affine gaps Why do we need matrices F, G, H? x i aligns to y j x 1 ……x i-1 x i x i+1 y 1 ……y j-1 y j - x i aligns to a gap after y j x 1 ……x i-1 x i x i+1 y 1 ……y j …- - Add -d Add -e G(i+1, j) = F(i, j) – d G(i+1, j) = G(i, j) – e Because, perhaps G(i, j) < V(i, j) (it is best to align x i to y j if we were aligning only x 1 …x i to y 1 …y j and not the rest of x, y), but on the contrary G(i, j) – e > V(i, j) – d (i.e., had we “fixed” our decision that x i aligns to y j, we could regret it at the next step when aligning x 1 …x i+1 to y 1 …y j )

Needleman-Wunsch with affine gaps Initialization:V(i, 0) = d + (i – 1)  e V(0, j) = d + (j – 1)  e Iteration: V(i, j) = max{ F(i, j), G(i, j), H(i, j) } F(i, j) = V(i – 1, j – 1) + s(x i, y j ) V(i – 1, j) – d G(i, j) = max G(i – 1, j) – e V(i, j – 1) – d H(i, j) = max H(i, j – 1) – e Termination: V(i, j) has the best alignment Time? Space?

To generalize a bit… … think of how you would compute optimal alignment with this gap function ….in time O(MN)  (n)

Bounded Dynamic Programming Assume we know that x and y are very similar Assumption: # gaps(x, y) < k(N) xixi Then,|implies | i – j | < k(N) yj yj We can align x and y more efficiently: Time, Space: O(N  k(N)) << O(N 2 )

Bounded Dynamic Programming Initialization: F(i,0), F(0,j) undefined for i, j > k Iteration: For i = 1…M For j = max(1, i – k)…min(N, i+k) F(i – 1, j – 1)+ s(x i, y j ) F(i, j) = maxF(i, j – 1) – d, if j > i – k(N) F(i – 1, j) – d, if j < i + k(N) Termination:same Easy to extend to the affine gap case x 1 ………………………… x M y 1 ………………………… y N k(N)

Recap Dynamic Programming Global sequence alignment  Needleman–Wunsch  Overlap detection  Banded alignment  Convex gaps  Affine gaps Local sequence alignment  Smith-Waterman

Computer Scientists vs Biologists

Computer scientists vs Biologists Nothing is ever true or false in Biology Everything is true or false in computer science

Computer scientists vs Biologists Biologists strive to understand the complicated, messy natural world Computer scientists seek to build their own clean and organized virtual worlds

Biologists are obsessed with being the first to discover something Computer scientists are obsessed with being the first to invent or prove something Computer scientists vs Biologists

Biologists are comfortable with the idea that all data have errors Computer scientists are not Computer scientists vs Biologists

Computer scientists get high-paid jobs after graduation Biologists typically have to complete one or more 5-year post-docs... Computer scientists vs Biologists

Computer Science is to Biology what Mathematics is to Physics