Distribution of H 2 O and SO 2 in the atmosphere of Venus Yung Y. 1, Zhang X. 1, Liang M.-C. 2 and Parkinson C. 3 1 California Institute of Technology.

Slides:



Advertisements
Similar presentations
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer 1, D. E. Shemansky 2, X. Zhang 1, Y. L. Yung 1 1 Division of Geological and Planetary Sciences,
Advertisements

METO 621 CHEM Lesson 2. The Stratosphere We will now consider the chemistry of the troposphere and stratosphere. There are two reasons why we can separate.
Electroscavenging of Condensation and Ice- Forming Nuclei Brian A. Tinsley University of Texas at Dallas WMO Cloud Modeling Workshop,
Modeling the Distribution of H 2 O and HDO in the upper atmosphere of Venus Mao-Chang Liang Research Center for Environmental Changes, Academia Sinica.
CO 2 in the middle troposphere Chang-Yu Ting 1, Mao-Chang Liang 1, Xun Jiang 2, and Yuk L. Yung 3 ¤ Abstract Measurements of CO 2 in the middle troposphere.
Modeling the Distribution of H 2 O and HDO in the upper atmosphere of Venus Mao-Chang Liang Research Center for Environmental Changes, Academia Sinica.
Using global models and chemical observations to diagnose eddy diffusion.
Modeling Carbon Species in the Atmosphere of Neptune and Comparison with Spitzer Observations Xi Zhang 1, Mao-Chang Liang 2, Daniel Feldman 1, Julianne.
Modeling of OCS in the Lower Atmosphere of Venus Yuk L. Yung M. C. Liang, X. Jiang, C. Lee, B. Bezard and E. Marq California Institute of Technology
Chemical Sources and Sinks of OCS in the Lower Atmosphere of Venus Yuk L. Yung M. C. Liang, California Institute of Technology EGU.
METO 637 Lesson 13. Air Pollution The Troposphere In the Stratosphere we had high energy photons so that oxygen atoms and ozone dominated the chemistry.
METO 637 Lesson 20. Planetary Atmospheres The existence of an atmosphere depends on three factors: (1) How close the planet is to the sun – basically.
Deuterated Methane and Ethane in the Atmosphere of Jupiter Christopher D. Parkinson 1,2, Anthony Y.-T. Lee 1, Yuk L. Yung 1, and David Crisp 2 1 Division.
(a)(b)(c) Simulation of upper troposphere CO 2 from two-dimensional and three-dimensional models Xun Jiang 1, Runlie Shia 2, Qinbin Li 1, Moustafa T Chahine.
NATS 101 Lecture 2 Atmospheric Composition and Vertical Structure.
METO 637 Lesson 23. Titan A satellite of Jupiter. Titan has a bulk composition of about half water ice and half rocky material. Although similar to the.
Figure 1 Figure 8 Figure 9Figure 10 Altitude resolved mid-IR transmission of H 2 O, CH 4 and CO 2 at Mauna Loa Anika Guha Atmospheric Chemistry Division,
PHOTON AND WATER MEDIATED SULFUR OXIDE AND ACID CHEMISTRY IN THE ATMOSPHERE OF VENUS Jay A. Kroll, Veronica Vaida Department of Chemistry and Biochemistry.
Photochemical Distribution of Venusian Sulphur and Halogen Species AND Why Vulcanism cannot be the source for Venusian SO 2 above 80km C. D. Parkinson.
New Insights into the Atmospheric Chemistry of Venus from Venus Express Yuk L. Yung Caltech GISS Seminar, Mar
Chemistry of Venus’ Atmosphere Vladimir A. Krasnopolsky Photochemical model for km Photochemical model for km Chemical kinetic model for.
*K. Ikeda (CCSR, Univ. of Tokyo) M. Yamamoto (RIAM, Kyushu Univ.)
Winds and sulfur/water photochemistry in the Venus middle atmosphere from ground-based μ-wave Observations of 12 CO/ 13 CO, SO 2, SO, and HDO B. Sandor.
Glyoxal and Methylglyoxal; Chemistry and Their Effects on Secondary Organic Aerosol Dasa Gu Sungyeon Choi.
Response of Middle Atmospheric Hydroxyl Radical to the 27-day Solar Forcing King-Fai Li 1, Qiong Zhang 2, Shuhui Wang 3, Yuk L. Yung 2, and Stanley P.
Water and Methane in the Upper Troposphere and Stratosphere based on ACE-FTS Measurements Acknowledgements: The Canadian Space Agency (CSA) is the primary.
Photochemical Control of the Distribution of Venusian Water and Comparison to Venus Express SOIR Observations Christopher D. Parkinson 1, Yuk L. Yung 2,
 Assuming only absorbing trace gas abundance and AOD are retrieved, using CO 2 absorption band alone provides a DOF ~ 1.1, which is not enough to determine.
Earth&Atmospheric Sciences, Georgia Tech Modeling the impacts of convective transport and lightning NOx production over North America: Dependence on cumulus.
Upper haze on the night side of Venus from VIRTIS-M / Venus Express limb observations D. Gorinov (1,2), N. Ignatiev (1,2), L. Zasova (1,2), G. Piccioni.
Upper Stratospheric and Lower Mesospheric HO x :Theory and Observations Tim Canty 1, Herb Pickett 2, Brian Drouin 2, Ken Jucks 3, Ross Salawith 2 HO x.
The Climate on Venus Fred Taylor Venus Express Interdisciplinary Scientist EGU Vienna 16 April 2008.
The preservation of long-range transported nitrate in snow at Summit, Greenland Jack Dibb 1, Meredith Hastings 2, Dorothy Fibiger 3*, D. Chen 4, L. Gregory.
Camp et al. (2003) illustrated that two leading modes of tropical total ozone variability exhibit structrures of the QBO and the solar cycle. Figure (1)
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
APPLICATION OF KOHLER THEORY: MODELING CLOUD CONDENSATION NUCLEI ACTIVITY Gavin Cornwell, Katherine Nadler, Alex Nguyen, and Steven Schill.
 We also investigated the vertical cross section of the vertical pressure velocity (dP/dt) across 70°W to 10°E averaged over 20°S-5°S from December to.
Modeling GOES-R µm brightness temperature differences above cold thunderstorm tops Introduction As the time for the launch of GOES-R approaches,
The Influence of loss saturation effects on the assessment of polar ozone changes Derek M. Cunnold 1, Eun-Su Yang 1, Ross J. Salawitch 2, and Michael J.
Mao-Chang Liang 1,2, Claire Newman 3, Yuk L. Yung 3 1 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan 2 Graduate Institute of.
Yuk Yung (Caltech), M. C. Liang (Academia Sinica), X. Zhang (Caltech),
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
The Deep Convective Clouds and Chemistry (DC3) Field Experiment Mary C. Barth (NCAR), W. H. Brune (PSU), C. A. Cantrell (U. Colorado), S. A. Rutledge (CSU),
X. Zhang 1, R. Shia 1, M. Liang 2, C. Newman 1, D. Shemansky 3, Y. Yung 1, 1 Division of Geological and Planetary Sciences, California Institute of Technology,
Near-Infrared Photochemistry of Atmospheric Nitrites Paul Wennberg, Coleen Roehl, Geoff Blake, and Sergey Nizkorodov California Institute of Technology.
Spectroscopy and Radiative Transfer – Application to Martian atmosphere Helen Wang Smithsonian Astrophysical Observatory April 2012.
METO 621 CHEM Lesson 4. Total Ozone Field March 11, 1990 Nimbus 7 TOMS (Hudson et al., 2003)
(a)(b)(c) Simulation of upper troposphere CO 2 from two-dimensional and three-dimensional models Xun Jiang 1, Runlie Shia 2, Qinbin Li 1, Moustafa T Chahine.
Ch. 1 Review games Quia web Name : firstlast876 Password: student I.D. #
Results We first best-fit the zonal wind and temperature simulated in the 3D PlanetWRF using the semi- analytic 2D model with,,, and. See Fig 2. The similarity.
University of California, Los Angeles Nocturnal Vertical Gradients of O 3, NO 2, NO 3, HONO, HCHO, and SO 2 during CalNex 2010 Tsai Catalina, Kam Weng.
Figure 1 Figure 8 Figure 9Figure 10 Altitude resolved mid-IR transmission of H 2 O, CH 4 and CO 2 at Mauna Loa Anika Guha Atmospheric Chemistry Division,
Variability of CO 2 From Satellite Retrievals and Model Simulations Xun Jiang 1, David Crisp 2, Edward T. Olsen 2, Susan S. Kulawik 2, Charles E. Miller.
Night OH in the Mesosphere of Venus and Earth Christopher Parkinson Dept. Atmospheric, Oceanic, and Space Sciences University of Michigan F. Mills, M.
Atmosphere-ocean interactions Exchange of energy between oceans & atmosphere affects character of each In oceans –Atmospheric processes alter salinity.
Fifth Workshop on Titan Chemistry April 2011, Kauai, Hawaii Organic Synthesis in the Atmosphere of Titan: Modeling and Recent Observations Yuk Yung.
SOIR Data Workshop SOIR science status A.C. Vandaele, A. Mahieux, S. Robert, R. Drummond, V. Wilquet, E. Neefs, B. Ristic, S. Berkenbosch, R. Clairquin.
U.A. Dyudina, A.P. Ingersoll, California Institute of Technology Pasadena, CA, Objectives We study lightning on Jupiter using spatially resolved.
SCSL SWAP/LYRA workshop
Jay Kroll*, D. James Donaldson†, and Veronica Vaida*
D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡
Updates on Solar Signal in the Stratospheric Ozone using a 3D CTM and SAGE v7.0 data Sandip Dhomse, Martyn Chipperfiield, Wuhu Feng, Ryan Hossaini, Graham.
Sub-mm Spectroscopic Observations from the JCMT: Composition, Chemistry and Winds at km B. Sandor, T. Clancy, G. Moriarty-Schieven, & F.P. Mills.
Photochemical processes on Titan
Variability of CO2 From Satellite Retrievals and Model Simulations
Variability of CO2 From Satellite Retrievals and Model Simulations
Venus Clouds and Hazes LW Esposito 10 July 2007.
Comparisons and simulations of same-day observations of the ionosphere of Mars by radio occultation experiments on Mars Global Surveyor and Mars Express.
Revised tholin profile for the atmosphere of Titan
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Presentation transcript:

Distribution of H 2 O and SO 2 in the atmosphere of Venus Yung Y. 1, Zhang X. 1, Liang M.-C. 2 and Parkinson C. 3 1 California Institute of Technology 2 Academia Sinica, Taiwan 3 Univ. of Michigan

Abstract The large variability of H 2 O and SO 2 in the atmosphere of Venus above the cloud tops is puzzling, especially since there is little evidence for their variability in the lower atmosphere. We note three important related facts: (1) The abundances of H 2 O and SO 2 in the deep atmosphere are of the same order of magnitude ~100 ppm, (2) there is a rapid decrease in H 2 O and SO 2 just above the cloud tops, resulting in sharp vertical gradients in their vertical profiles, and (3) the primary removal mechanism for H 2 O and SO 2 above the cloud tops is formation of H 2 SO 4 aerosols. In this work we examine the possibilities that H 2 O and SO 2 could be regulated in a chemistry-transport model.

Observation: H2O measurement Fig. 1: Disk-average H2O mixing ratios were derived from Mm-wave spectra in the Venus mesosphere (65–100 km) (Sandor et al. 2005). The data are shown as a function of measurement date. Error bars indicate 1-sigma s/n uncertainty. Observations show that the Venus mesosphere was drier in December 2002–June 2004 than in March 1998–January 2001.

Fig. 2: Measurements of SO2 on Venus above clouds, available from 1969 up to now (see Table 2 in Belyaev et al., 2008). The SO2 content in ppb volume is considered at the level of 40 mbar (69 km of altitude). Observation: SO2 measurement

Condensation SO 2 H 2 SO 4 SO SO 3 H 2 SO 4 Aerosol, clouds hν O H2OH2O O, ClO Lower Atmosphere Rise Fig. 3: Major pathways for the photochemistry of SO 2 above the cloud tops

Chemical Model The major pathways for the photochemistry of SO 2 above the cloud tops are shown in Fig. 3. SO 2 exchanges rapidly with SO and SO 3. However, formation of H 2 SO 4 followed by condensation sequesters SO 2 in aerosol particles and remove it from active chemistry. The reaction that forms H 2 SO 4 appears to involve a complex with H 2 O: SO 3 + H 2 O = SO 3 ·H 2 O SO 3 ·H 2 O + H 2 O = H 2 SO 4 + H 2 O We adopt the expression for the rate of formation of of H 2 SO 4 from Lovejoy et al. (1996) Note the extremely large dependence on temperature and the quadratic dependence on the concentration of H 2 O The model we used for this study is based on Yung and DeMore (1982) with updates from Mills (1998) and Yung et al. (2009).

Sensitivity of SO 2 to transport The vertical profile SO 2 has a very sharp vertical gradient above the cloud tops due to its rapid loss by conversion to H 2 SO 4 aerosols. Hence a change in transport (parameterized by the eddy diffusion coefficient) could result in a large change in the concentration of SO 2 above the cloud tops. The standard model is given by the black curve in Fig. 4. The purple, blue and light blue curves are for models in which the eddy diffusion coefficient was multiplied 2, 3 and 10 times. Note that at higher altitudes, the changes are on the order of 100.

Fig. 4: SO2 sensitivity study to eddy mixing profiles. Different color refers to different eddy diffusion profile. Squares indicate the observations.

Sensitivity of H 2 O to the lower boundary (at 58 km) H 2 O is removed above the cloud tops by formation of H 2 SO 4. As a result, the vertical profile of H 2 O falls with height in the standard model (Fig. 5, red curve), where the H 2 O at the lower boundary is 100 ppm. As we decrease the H 2 O at the lower boundary to 80 and 70 ppm, there is corresponding decrease in the H 2 O higher up (green, light blue). As the H 2 O concentration at the lower boundary is further lowered to 65 and 60 ppm, there is a sudden falloff of the H 2 O above 70 km. The reason is the complete sequestration of H 2 O by H 2 SO 4 aerosols. Thus, H 2 O could exhibit a bifurcation as its value falls below a critical value.

Fig. 5: H2O sensitivity study for lower boundary conditions. Different color refers to different H2O content in the bottom.

Conclusion SO 2 and H 2 O can regulate each other via formation of H 2 SO 4 Small changes in the transport rates for SO 2 may result in large changes in SO 2 above the cloud tops Below a critical value, H 2 O could be completely sequestered by H 2 SO 4 aerosols The combination of the above could explain some of the observed variabilities in SO 2 and H 2 O on Venus

Acknowledgements We acknowledge support by NASA and we thank B. Sandor and J.-L. Bertaux for helpful discussions and J. Weibel for modeling assistance.

Reference Belyaev, D., O., et al. 2008, First observations of SO2 above Venus’ clouds by means of Solar Occultation in the infrared, J. Geophys. Res., 113, E00B25, doi: /2008JE Bertaux, J.-L., et al. 2008, SPICAV/SOIR on board Venus Express: An overview of two years of observations, paper presented at 37th COSPAR Scientific Assembly, Montreal, Canada, July 13– 21. Lovejoy E. R., Hanson D. R., and L. G. Huey L. G. 1996, Kinetics and Products of the Gas-Phase Reaction of SO 3 with Water, J. Phys. Chem. 100, Mills, F.P. 1998, I. observations and photochemical modeling of the Venus middle atmosphere. II. thermal infrared spectroscopy of Europa and Callisto. Ph.D. dissertation, California Institute of Technology, Pasadena, CA, 366pp. Sandor, B. J., and R. T. Clancy 2005, Water vapor variations in the Venus mesosphere from microwave spectra, Icarus, 177, 129– 143. Yung, Y. L., and W. B. DeMore 1982, Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution, Icarus, 51, 199– 247, doi: / (82)90080-X. Yung, Y. L., et al. 2009, Evidence for carbonyl sulfide (OCS) conversion to CO in the lower atmosphere of Venus, J. Geophys. Res., 114, E00B34, doi: /2008JE