MIRNAS ARRAYS: DATABASES AND PLATFORMS

Slides:



Advertisements
Similar presentations
Two short pieces MicroRNA Alternative splicing.
Advertisements

RNA Interference (RNAi) Pathway
Improving miRNA Target Genes Prediction Rikky Wenang Purbojati.
Naveen K. Bansal and Prachi Pradeep Dept. of Math., Stat., and Comp. Sci. Marquette University Milwaukee, WI (USA)
Niels Tolstrup et al. summarized by Ki-Roo Shin
MicroRNA Cass Jabara.
MiRNA in computational biology 1 The Nobel Prize in Physiology or Medicine for 2006 Andrew Z. Fire and Craig C. Mello for their discovery of "RNA interference.
MiRNA Platform Overview The Agilent miRNA Microarray System A New Microarray-based Tool for Profiling Human miRNAs.
A turbo intro to (the bioinformatics of) microRNAs 11/ Peter Hagedorn.
Agenda Introduction and History Workflow in miRNA experiments
Predicting RNA Structure and Function
Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs LEE P. LIM, NELSON C. LAU, PHILIP GARRETT-ENGELE ANDREW GRIMSON,
Computational biology seminar
Predicting RNA Structure and Function. Nobel prize 1989Nobel prize 2009 Ribozyme Ribosome RNA has many biological functions The function of the RNA molecule.
Presenting: Asher Malka Supervisor: Prof. Hermona Soreq.
MicroRNA Target Prediction Using Muscle Atrophy Genes As Models Caltech Wold Lab Mentors: Dr. Barbara Wold Diane Trout Brandon King Gilberto Hernandez,
Predicting RNA Structure and Function. Following the human genome sequencing there is a high interest in RNA “Just when scientists thought they had deciphered.
 MicroRNAs (miRNAs) are a class of small RNA molecules, about ~21 nucleotide (nt) long.  MicroRNA are small non coding RNAs (ncRNAs) that regulate.
UTR motifs and microRNA analysis 曾 大 千 助 理 教 授 10/28/2008.
Predicting RNA Structure and Function. Nobel prize 1989 Nobel prize 2009 Ribozyme Ribosome.
microRNA computational prediction and analysis
More regulating gene expression. Fig 16.1 Gene Expression is controlled at all of these steps: DNA packaging Transcription RNA processing and transport.
The Bytes of biological Data Artemis G. Hatzigeorgiou Professor of Bioinformatics Department of Electrical and Computer Engineering University of Thessaly.
MicroRNA Targets Prediction and Analysis. Small RNAs play important roles The Nobel Prize in Physiology or Medicine for 2006 Andrew Z. Fire and Craig.
Amandine Bemmo 1,2, David Benovoy 2, Jacek Majewski 2 1 Universite de Montreal, 2 McGill university and Genome Quebec innovation centre Analyses of Affymetrix.
Regulation of transcript stability and post-transcriptional processes – from yeast to human Reut Shalgi Weizmann Institute of Science, Israel RSMD workshop.
From Structure to Function. Given a protein structure can we predict the function of a protein when we do not have a known homolog in the database ?
Computational Molecular Biology Biochem 218 – BioMedical Informatics miRNA Regulatory.
RNA Folding. RNA Folding Algorithms Intuitively: given a sequence, find the structure with the maximal number of base pairs For nested structures, four.
Predicting MicroRNA Genes and Target Site using Structural and Sequence Features: Machine Learning Approach Malik Yousef Institute of Applied Research,
More regulating gene expression. Combinations of 3 nucleotides code for each 1 amino acid in a protein. We looked at the mechanisms of gene expression,
1 Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine Chenghai Xue, Fei Li, Tao He,
MBP1007/ Nucleic Acids A functional mRNA: The cytoplasmic story Objectives (1) To discuss the iNUTS and iBOLTS of how mRNAs function in the cytoplasm.
1 RNA Bioinformatics Genes and Secondary Structure Anne Haake Rhys Price Jones & Tex Thompson.
Welcome Everyone. Self introduction Sun, Luguo ( 孙陆果) Contact me by Professor in School of Life Sciences & National Engineering.
Drosha. 121th Lab meeting 석사 2 년 박 은 실.
V10: microRNAs and cancer
UBio Training Courses Micro-RNA web tools Gonzalo
SmallRNAs Small molecules, big functions. Brief history The first described microRNA, lin-4 was cloned and characterised as a translational repressor.
Youngae Lee Identification of microRNA function by target prediction and expression profiling.
Intro to Microarray Analysis Courtesy of Professor Dan Nettleton Iowa State University (with some edits)
CSLS Retreat 2007 Matan Hofree & Assaf Weiner 1. Outline  A brief introduction to microRNA  Project motivation and goal  Selecting the data sets 
Causes and consequences of microRNA dysregulation in cancer
MicroRNAs and Other Tiny Endogenous RNAs in C. elegans Annie Chiang JClub Ambros et al. Curr Biol 13:
Other genomic arrays: Methylation, chIP on chip… UBio Training Courses.
Nature, 2008, Doi: /nature07103 Semrah Kati
mRNA post-transcriptional regulation
MicroRNAs Small Non-coding RNAs with Big Impact in Biology Hua-Chien Chen Ph.D Molecular Medicine Research Center Chang Gung University.
Bioinformatics and Computational Biology
Introduction Results Conclusions Acknowledgements Alzheimer’s Disease (AD) is the most common chronic degenerative neurological disease, and there are.
Establishment and verification of miRNAs expression molecules for breast cancer and its distant metastasis Yanhong Gao Associate Professor Department of.
Motif Search and RNA Structure Prediction Lesson 9.
Abstract Premise Figure 1: Flowchart pri-miRNAs were collected from miRBase 10.0 pri-miRNAs were compared to hsa and ptr genomes using BlastN and potential.
RNA Structure Prediction
NCode TM miRNA Analysis Platform Identifies Differentially Expressed Novel miRNAs in Adenocarcinoma Using Clinical Human Samples Provided By BioServe.
MiRNAs and siRNAs 5 th March 2013 Saeideh Jafarinejad 4/22/2013 Rhumatology Research Center Lab(RRC lab)
Different microarray applications Rita Holdhus Introduction to microarrays September 2010 microarray.no Aim of lecture: To get some basic knowledge about.
Mestrado Integrado em Medicina Biologia Celular e Molecular II
Date of download: 7/10/2016 Copyright © 2016 McGraw-Hill Education. All rights reserved. Basic steps of gene expression—transcription factors regulate.
Building Excellence in Genomics and Computational Bioscience miRNA Workshop: miRNA biogenesis & discovery Simon Moxon
ANIMAL TARGET PREDICTION - TIPS
MicroRNAs: regulators of gene expression and cell differentiation
C. Belair, F. Darfeuille, C. Staedel 
Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets  Benjamin P. Lewis, Christopher B. Burge,
Matthew W Jones-Rhoades, David P Bartel  Molecular Cell 
Prediction of Plant MicroRNA Targets
siRNA Versus miRNA as Therapeutics for Gene Silencing
Volume 54, Issue 6, Pages (June 2014)
Small RNAs and Immunity
Derek de Rie and Imad Abuessaisa Presented by: Cassandra Derrick
Presentation transcript:

MIRNAS ARRAYS: DATABASES AND PLATFORMS UBio Training Courses Gonzalo Gómez//ggomez@cnio.es

miRNAs Firstly detected in C. elegans (V. Ambros, 1993) Mapping to non-coding regions (introns) Pri-miRNA processed by Drosha DICER removes the structural loop mature miRNA: ssRNA, 22 nucleotides miRNA-RISK complex: mRNAs post-transcriptional inhibition 33% of human genes are supposed to be regulated by miRNAs.

miRNAs Biological role Brain development (miR-430) • Nervous system development(miR-273) • Pancreatic Langerhans islands development (miR-375) • Adipocytes development (miR-143) • Heart development(miR-1) Inmune response (miR-223, cluster miR-17~92, miR-146a,miR-155…) • Apoptosis (miR-14) Maduracion linea mieloide y linfoide

miRNAs and cancer OncomiRs  Proliferation  Invasion Oncogene  Angiogenesis  Cell death Oncogene miRNA Proliferation Invasion Angiogenesis  Cell death Tumor suppressor Upregulation Tumor formation Downregulation miR-148a y miR-34b/c parecen inhibir la diseminacion tumoral regulando genes relacionados con la metastasis. Cuando estan los genes de los miRs estan hipermetilados se upregulan los genes de metástasis genes favoreciendo la diseminacion. Esquela-Kerscher & Slack. Nature Reviews Cancer. 2006.

miRNAs Target sites miRNAs seed region: 5’, nucleotides 2-7(8) Most gene targets of a given miRNA have only a single 7 nt matching to that miRNA seed region. 7-8 nt hundreds of target predictions for each miRNA family (~300 conserved targets per miRNA family in vertebrates) High rate of false positives in predictions. Bartel D. Cell 2009.

Target Prediction Algorithms miRNAs Target Prediction Algorithms PREDICTION CRITERIA miR seed-target complete base-pairing Interspecies conservation Number of binding sites for a given 3’UTR in a particular gene Free energy for the miR-target duplex Binding site accessibility miRNA- target secondary structure Overlapping entre los metodos (targetSacn, PicTAR, EMBL) es bastante alto aunque no al 100% . Sources of these differences could be: alignment artifacts, use of slightly different UTR DBs, use of different miRNAs sequences… Other prediction algorithms… Bartel D. Cell 2009. More target prediction tools: http://en.wikipedia.org/wiki/List_of_RNA_structure_prediction_software#Inter_molecular_interactions:_MicroRNA:UTR

miRBase miRNAs Databases H. Sapiens ~695 miRNAs Version Date miRNAs 1.0 12/02 218 1.1 01/03 262 1.2 04/03 295 1.3 05/03 332 1.4 07/03 345 2.0 07/03 506 2.1 09/03 558 2.2 11/03 593 3.0 01/04 719 3.1 04/04 899 4.0 07/04 1185 5.0 09/04 1345 5.1 12/04 1420 6.0 04/05 1650 7.0 06/05 2909 7.1 10/05 3424 8.0 02/06 3518 8.1 05/06 3963 8.2 07/06 4039 9.0 10/06 4361 9.1 02/07 4449 9.2 05/07 4584 10.0 08/07 5071 10.1 12/07 5395 11.0 04/08 6396 12.0 09/08 8619 13.0 03/09 9539 14.0 09/09 10833 http://www.mirbase.org/ H. Sapiens ~695 miRNAs M. musculus: ~488 miRNAs

miRNA nomenclature (miRBase) miRNAs miRNA nomenclature (miRBase) mir: immature sequence (hairpin). E.g. hsa-mir-203 b) miR: mature miRNA sequence. E.g. hsa-miR-203 - a/b: paralog miRs, difer in 1-2 nucleotides. E.g. hsa-miR-9a, hsa-miR-9b - 1-2: Identical miRs, different hairpin. Ej. hsa-miR-19b-1, hsa-miR-19b-2 - 5p-3p: mature miR generated from precursor 5´ (or 3) sequence. E.g. hsa-miR-17-5p - *: Minor transcript complementary to mature miR. E.g. hsa-miR-33a* Paralogos: origen por duplicacion intraespecie

TarBase miRNAs Databases http://microrna.gr/tarbase Contains only those miRNA-target relationships experimentally validated TarBase: Contiene solo miRNAs-targets verificados experimentalmente. Logicamente tiene menios información. The database of experimentally supported targets: a functional update of TarBase. Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG., Nucleic Acids Res. 2009 Jan;37(Database issue):D155-8.

miRNAs and disease Databases http://www.mir2disease.org/ http://cmbi.bjmu.edu.cn/hmdd Cancer (Calin and Croce 2006; Ura et al 2008; Stamatopoulos et al 2009…) Cardiovascular disease (Latronico et al. 2007; van Rooij and Olson 2007) Schizophrenia (Hansen, et al. 2007; Perkins et al. 2007) Renal misfunction (Williams 2007) Tourette syndrome (Esau and Monia 2007) Psoriasis (Sonkoly et al. 2007) Muscle disorders (Eisenberg et al. 2007), X fragile syndrome (Fiore and Schratt 2007) Policitemia vera (Bruchova et al. 2007) Diabetes (Williams 2007) Chronic hepatitis (Murakami et al. 2006) AIDS (Hariharan etal. 2005) Obesity (Weiler et al. 2006, Lovis et al. 2008, Xie et al. 2009).

miRNAs Detection Methods

miRNA microarrays Commercial platforms Human, rat, mouse dog, chimpanzee, etc EXIQON LNA = Locked Nucleic Acid LNA es una modificacion quimica que consiste en: ribose ring is "locked" with a methylene bridge connecting the 2’-O atom and the 4’-C atom. LNA hace mas estable el par DNA-miR para perfect match y 1mismatch. INVITROGEN: Human, rat, mouse Human, multispecie

Agilent recommendations. No normalization miRNA microarrays Commercial platforms Agilent recommendations. No normalization Normalization 75th percentile (75th value = 1) Abutting: colindando. Algunos autores (Pedro Lopez-Romero) proponen RMA with no background correction. Additional G-C pair in the probe-target interaction region stabilizes targeted miRNAs relative to homologous RNAs. Additionally, all probes contain a 5' hairpin (blue), abutting the probe-target region, to increase target and size miRNA specificity

miRNA microarrays Commercial platforms LNA = Locked Nucleic Acid Preprocessing scripts provided by Exiqon Background correction = normexp Normalization = quantiles RG_normexp <- backgroundCorrect(RGfilt_0, method = "normexp", offset=50) MA_norm <- normalizeBetweenArrays(RG_normexp$G, method="quantile") MA_lognorm<-log2(MA_norm) EXIQON LNA = Locked Nucleic Acid LNA es una modificacion quimica que consiste en: ribose ring is "locked" with a methylene bridge connecting the 2’-O atom and the 4’-C atom. LNA hace mas estable el par DNA-miR para perfect match y 1mismatch. LNA is chemical modification. Ribose ring is "locked" with a methylene bridge connecting the 2’-O atom and the 4’-C atom. LNA makes DNA-miR pairs more stable (higher Tm) when perfect match and 1mismatch hybridizations occurs.

OK! 20 normalized arrays 600 miRNAs 2 classes (healthy y tumor) miRNA microarrays Differential expression analysis 20 normalized arrays 600 miRNAs 2 classes (healthy y tumor) T test, SAM, limma FWER FDR METHOD Pvalue adjustment GEPAS Asterias SAM tools… pvalue OK! Differentially expressed miRNAs between classes FWER: Type I Family Wise Error Rate FDR: False Discovery Rate

THANKS! Visit UBio web ! http://bioinfo.cnio.es/