GRB 080319B: A Naked-Eye Blast from the Distant Universe Judy Racusin Penn State University 2008 Nanjing GRB Workshop, Nanjing, China, June 23-27.

Slides:



Advertisements
Similar presentations
GRB : a canonical fake short burst L. Caito, M.G. Bernardini, C.L. Bianco, M.G. Dainotti, R. Guida, R. Ruffini. 3 rd Stueckelberg Workshop July 8–18,
Advertisements

Testing the blast wave model with Swift GRBs Peter A. Curran Mullard Space Science Laboratory, UCL with RLC Starling, AJ van der Horst, A Kamble, RAMJ.
Klein-Nishina effect on high-energy gamma-ray emission of GRBs Xiang-Yu Wang ( 王祥玉) Nanjing University, China (南京大學) Co-authors: Hao-Ning He (NJU), Zhuo.
Understanding the prompt emission of GRBs after Fermi Tsvi Piran Hebrew University, Jerusalem (E. Nakar, P. Kumar, R. Sari, Y. Fan, Y. Zou, F. Genet, D.
Collaborators: Wong A. Y. L. (HKU), Huang, Y. F. (NJU), Cheng, K. S. (HKU), Lu T. (PMO), Xu M. (NJU), Wang X. (NJU), Deng W. (NJU). Gamma-ray Sky from.
Bruce Gendre Osservatorio di Roma / ASI Science Data Center Recent activities from the TAROT/Zadko network.
satelliteexperimentdetector type energy band, MeV min time resolution CGRO OSSE NaI(Tl)-CsI(Na) phoswich 0.05–10 4ms COMPTELNaI0.7–300.1s EGRET TASCSNaI(Tl)1-2001s.
Can a double component outflow explain the X-ray and Optical Lightcurves of GRBs? Massimiliano De Pasquale 1 P. Evans 2, S. Oates 1, M. Page 1, S. Zane.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China) Fan (2009, MNRAS) and Fan & Piran (2008, Phys. Fron. China)
Optical Emission Components of Gamma-Ray Burst Phenomenon Enwei Liang GXU-NAOC Center for Astrophys. & Space Sci. Co-authors: Liang Li (GXU), Shuangxi.
GRB afterglows as background sources for WHIM absorption studies A. Corsi, L. Colasanti, A. De Rosa, L. Piro IASF/INAF - Rome WHIM and Mission Opportunities.
Reverse Shocks and Prompt Emission Mark Bandstra Astro
Global Properties of X-ray Afterglows Observed with XRT ENWEI LIANG (梁恩维) University of Guangxi, Nanning astro.gxu.edu.cn Nanjing
GRB B: Prompt Emission from Internal Forward-Reverse Shocks Yun-Wei Yu 1,2, X. Y. Wang 1, & Z. G. Dai 1 (俞云伟,王祥玉,戴子高) 1 Department of Astronomy,
Prompt optical observations of GRB and GRB A.
1 Nanjing June 2008 A universal GRB photon energy – luminosity relationship * Dick Willingale, Paul O’Brien, Mike Goad, Julian Osborne, Kim Page, Nial.
GRBs and Magnetic Fields Shiho Kobayashi (小林史歩) Liverpool John Moores University.
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
X-ray/Optical flares in Gamma-Ray Bursts Daming Wei ( Purple Mountain Observatory, China)
A Radio Perspective on the GRB-SN Connection Alicia Soderberg May 25, 2005 – Zwicky Conference.
Temporal evolution of thermal emission in GRBs Based on works by Asaf Pe’er (STScI) in collaboration with Felix Ryde (Stockholm) & Ralph Wijers (Amsterdam),
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
The Canonical Swift/UVOT Lightcurve Sam Oates (UCL-MSSL) On behalf of the Swift/UVOT team UCL DEPARTMENT OF SPACE AND CLIMATE PHYSICS MULLARD SPACE SCIENCE.
Outflow Residual Collisions and Optical Flashes Zhuo Li (黎卓) Weizmann Inst, Israel moving to Peking Univ, Beijing Li & Waxman 2008, ApJL.
Gamma-Ray Burst Early Afterglows Bing Zhang Physics Department University of Nevada, Las Vegas Dec. 11, 2005, Chicago, IL.
Swift Observations of GRBs David Burrows The Pennsylvania State University.
Swift Nanjing GRB Conference Prompt Emission Properties of X-ray Flashes and Gamma-ray Bursts T. Sakamoto (CRESST/UMBC/GSFC)
Modeling GRB B Xuefeng Wu (X. F. Wu, 吴雪峰 ) Penn State University Purple Mountain Observatory 2008 Nanjing GRB Workshop, Nanjing, China, June
Jet Models of X-Ray Flashes D. Q. Lamb (U. Chicago) Triggering Relativistic Jets Cozumel, Mexico 27 March –1 April 2005.
A New Chapter in Radio Astrophysics Dale A. Frail National Radio Astronomy Observatory Gamma Ray Bursts and Their Afterglows AAS 200 th meeting, Albuquerque,
Swift Annapolis GRB Conference Prompt Emission Properties of Swift GRBs T. Sakamoto (CRESST/UMBC/GSFC) On behalf of Swift/BAT team.
Recent Observations of GRB-Supernovae Bethany Elisa Cobb The George Washington University IAU Symposium 279 March 13, 2012.
Rise and Fall of the X-ray flash : an off-axis jet? C.Guidorzi 1,2,3 on behalf of a large collaboration of the Swift, Liverpool and Faulkes Telescopes,
Recent Results and the Future of Radio Afterglow Observations Alexander van der Horst Astronomical Institute Anton Pannekoek University of Amsterdam.
Gamma-Ray Bursts observed with INTEGRAL and XMM- Newton Sinead McGlynn School of Physics University College Dublin.
COLLABORATORS: Dale Frail, Derek Fox, Shri Kulkarni, Fiona Harrisson, Edo Berger, Douglas Bock, Brad Cenko and Mansi Kasliwal.
1 Short GRBs - and other recent developments in GRBs Tsvi Piran ( HU, Jerusalem) Dafne Guetta (Rome Obs.)
The Early Time Properties of GRBs : Canonical Afterglow and the Importance of Prolonged Central Engine Activity Andrea Melandri Collaborators : C.G.Mundell,
Studies on the emission from the receding jet of GRB Xin Wang, Y. F. Huang, and S. W. Kong Department of Astronomy, Nanjing University, China A&A submitted.
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
Dark Gamma-Ray Bursts and their Host Galaxies Volnova Alina (IKI RAS), Pozanenko Alexei (IKI RAS)
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
Radio and X-ray observations of SN 2009ip Poonam Chandra National Centre for Radio Astrophysics January 4, 2013 Collaborators: Raffaella Margutti (Harvard),
Moriond – 1 st -8 th Feb 2009 – La Thuile, Italy. Page 1 GRB results from the Swift mission Phil Evans, Paul O'Brien and the Swift team.
Chandra Searches for Late-Time Jet Breaks in GRB Afterglows David Burrows, Judith Racusin, Gordon Garmire, George Ricker, Mark Bautz, John Nousek, & Dirk.
Host Galaxy of Dark Gamma-Ray Burst GRB Host Galaxy of Dark Gamma-Ray Burst GRB A. Volnova (SAI MSU), A. Pozanenko (ISR RAS), V. Rumyantsev.
Короткий гамма-всплеск GRB : открытие килоновой? В.М.Липунов.
BeppoSAX Observations of GRBs: 10 yrs after Filippo Frontera Physics Department, University of Ferrara, Ferrara, Italy and INAF/IASF, Bologna, Italy Aspen.
Gamma-Ray Burst Ring-shaped Jets And Their Afterglows Ming Xu Department of Astronomy, Nanjing University Gamma-ray Sky from Fermi: Neutron.
Francisco Virgili, LJMU June 22, 2012 GRBs 2012 Liverpool C. Mundell, A. Melandri, C. Guidorzi, R. Margutti, A. Gomboc, S. Kobayashi, V. Pal’shin, etc…
1 COSPAR Assembly, Montreal, COSPAR Assembly, Montreal, Prompt optical observations of GRB B astro-ph/ , submitted.
Elisabetta Maiorano IASF/INAF, Sezione di Bologna & Dip. Astronomia, Università di Bologna GRB : the burst before the Burst.
A relation to estimate the redshift from the X-ray afterglow light curve Bruce Gendre (IASF-Roma/INAF) & Michel Boër (OHP/CNRS)
Poonam Chandra Jansky Fellow, NRAO, Charlottesville & University of Virginia.
1 13 January 2005, AAS meeting, San Diego Swift X-ray Telescope Status & Observations of the Afterglow of GRB David Burrows - PSU University Partners:
Alessandra Corsi (1,2) Dafne Guetta (3) & Luigi Piro (2) (1)Università di Roma Sapienza (2)INAF/IASF-Roma (3)INAF/OAR-Roma Fermi Symposium 2009, Washington.
Gamma-ray Bursts from Synchrotron Self-Compton Emission Juri Poutanen University of Oulu, Finland Boris Stern AstroSpace Center, Lebedev Phys. Inst., Moscow,
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
Radio afterglows of Gamma Ray Bursts Poonam Chandra National Centre for Radio Astrophysics - Tata Institute of Fundamental Research Collaborator: Dale.
A complete sample of long bright Swift GRBs: correlation studies Paolo D’Avanzo INAF-Osservatorio Astronomico di Brera S. Campana (OAB) S. Covino (OAB)
On late time rebrightenings in GRB optical afterglows
Gamma Ray Bursts IV : Observational Techniques and some results Andrea Melandri INAF – Astronomical Observatory of Brera.
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
Ariel Majcher Gamma-ray bursts and GRB080319B XXIVth IEEE-SPIE Joint Symposium on Photonics, Web Engineering, Electronics for Astronomy and High Energy.
Dark Gamma-Ray Bursts and their Host Galaxies
Swift observations of X-Ray naked GRBs
Tight Liso-Ep-Γ0 Relation of Long Gamma-Ray Bursts
Presentation transcript:

GRB B: A Naked-Eye Blast from the Distant Universe Judy Racusin Penn State University 2008 Nanjing GRB Workshop, Nanjing, China, June 23-27

Broadband Observations of the Extraordinary Naked-Eye GRB B J. L. Racusin, S.V. Karpov, M. Sokolowski, J. Granot, X. F. Wu, V. Pal'shin, S. Covino, A.J. van der Horst, S. R. Oates, P. Schady, R. J. Smith, J. Cummings, R.L.C. Starling, L. W. Piotrowski, B. Zhang, P.A. Evans, S. T. Holland, K. Malek, M. T. Page, L. Vetere, R. Margutti, C. Guidorzi, A. P. Kamble, P.A. Curran, A. Beardmore, C. Kouveliotou, L. Mankiewicz, A. Melandri, P.T. O'Brien, K.L. Page, T. Piran, N. R. Tanvir, G. Wrochna, R.L. Aptekar, S. Barthelmy, C. Bartolini, G. M. Beskin, S. Bondar, M. Bremer, S. Campana, A. Castro-Tirado, A. Cucchiara, M. Cwiok, P. D'Avanzo, V. D'Elia, M. Della Valle, A. de Ugarte Postigo, W. Dominik, A. Falcone, F. Fiore, D. B. Fox, D. D. Frederiks, A. S. Fruchter, D. Fugazza, M. A. Garrett, N. Gehrels, S. Golenetskii, A. Gomboc, J. Gorosabel, G. Greco, A. Guarnieri, S. Immler, M. Jelinek, G. Kasprowicz, V. La Parola, A. J. Levan, V. Mangano, E.P. Mazets, E. Molinari, A. Moretti, K. Nawrocki, P.P. Oleynik, J. P. Osborne, C. Pagani, S. B. Pandey, Z. Paragi, M. Perri, A. Piccioni, E. Ramirez-Ruiz, P. W. A. Roming, I. A. Steele, R. G. Strom, V. Testa, G. Tosti, M.V. Ulanov, K. Wiersema, R. A. M. J. Wijers, J. M. Winters, A. F. Zarnecki, F. Zerbi, P. Mészáros, G. Chincarini, D. N. Burrows Submitted to Nature on May 11, 2008, astro-ph/ Formerly titled “GRB B: A Naked-Eye Blast from the Distant Universe”

Discovery of GRB B Swift-BAT discovered extremely bright trigger from GRB B ( keV) Konus-Wind simultaneously detected bright burst (20 keV-15 MeV) T 90 ~ 57 s E peak = 651 ± 15 keV E iso ~ 1.3 × ergs z=0.937 (Vreeswijk et al. GCN 7444)

Discovery of GRB B Serendipitously ~10° away from GRB A (discovered by Swift 30 minutes earlier) Wide-field ground optical telescopes “Pi of the Sky” and TORTORA had B in FOV starting before BAT trigger Optical Flash peaked at a V magnitude of ~5.3 “Pi of the Sky” Movie

Discovery of GRB B Swift promptly slewed to B, with XRT & UVOT observations beginning at ~60 s Observations followed by REM, Liverpool, Faulkes-N, Gemini-N/S, Pairitel, Nickel, Kait, Raptor, Super-LOTIS, PROMPT, Lulin, Mercator, VLT, HET, IRAM, WSRT, VLA, HST, Spitzer, Chandra  Probably the best broadband GRB observations ever obtained

Broadband Observations Facility*EpochBandPeak Flux †† Swift-BAT-120 – – 350 keV 2.3  erg cm -2 s -1 Konus-Wind-2 – – 1160 keV ‡ 2.3  erg cm -2 s -1 Swift-XRT 67 – 2.5  – 10 keV  Pi of the Sky-1380 – 468White5.9 mag TORTORA-20 – 97V5.3 mag Swift-UVOT white, u, v, b, w1, w2, m2  REM51 – 2070R, I, J, H, Ks  Liverpool Telescope 1.8  10 3 – 2.5  10 3 SDSS r,i  Faulkes Telescope North 2.5  10 4 – 2.0  10 5 Bessell R,I, SDSS r,i  VLT435 – 934J, Ks  Gemini N Photometry 3.0  10 5, 4.5  10 5 r, i  HST 1.6  10 6 F606W, F814W  Gemini N Spectroscopy 1.2   Å  HET 2.0  10 4 – 2.1  Å  Westerbork Synthesis Radio Telescope 50.5   GHz  IRAM-Plateau de Bure 6.0   GHz  VLA † 1.98  10 5 – 2.02  GHz 189  Jy Pairitel † 1.27 – 1.77  10 4 J, H, Ks  KAIT † 1.1  10 3 – 1.7  10 4 Clear, B, V, I  Nickel † 7.1  10 3 – 2.4  10 4 B, V, R, I  Gemini S † 8.9  10 4 – 1.7  10 5 g, r, i, z  Spitzer † 2.20  10 4 – 2.24   m  *Time since BAT trigger in seconds † Observations obtained from external sources (Bloom et al. 2008, GCN circulars 7506, 7509) ‡ KW light curve measured in 20 – 1160 keV range, peak flux measured in 20 keV – 7 MeV †† Peak fluxes listed only if a peak was actually observed

Broadband Observations Optical light curve is normalized to UVOT v-band X-ray and γ-ray arbitrarily scaled

Prompt Emission See Beskin talk for details of TORTORA and γ-ray correlations

Prompt Emission

Temporal coincidence and shape of prompt optical and γ-rays emission indicates that they stem from same physical region Optical flux ~4 orders of magnitude above extrapolation of γ-rays Therefore, optical and γ-rays must come from different emission components

Prompt Emission Mechanism Problems – Usual interpretation of optical flash as arising from reverse shock cannot explain initial steep rise or constant optical pulse widths – Usual interpretation of soft γ-rays as synchrotron emission cannot explain bright optical flash Solution – Optical: Synchrotron – γ-rays: Synchrotron Self-Compton See also Kumar & Panaitescu (2008)

Exceptional brightness of optical flash suggest ν a was not far above optical band at time of peak flux Implies very large Γ, which causes the internal shocks occur at an unusually large radius Leads to a low ν a, allowing photons to escape Prompt Emission Implications

A 3 rd spectral component would arise from 2 nd -order inverse-Compton scattering If our assumptions are valid, we would expect 3 rd component to peak at a few 10’s of GeV In which case it would have been easily detectable by GLAST If mechanism is common, perhaps GLAST will detect this emission from some future GRBs Prompt Emission Predictions

Afterglow Optical light curve is normalized to UVOT v-band X-ray and γ-ray arbitrarily scaled

Normalized Optical Light Curve α opt,1 ~6.5 α opt,2 ~2.5 α opt,3 ~1.25

X-ray Light Curve α x,1 ~1.45 α x,2 ~2.05 α x,3 ~0.95 α x,4 ~2.70

Afterglow Models Two-Component Jet Additional theoretical details will be presented in next talk by X. F. Wu

Afterglow Models 1 st X-ray broken power-law (80 s < t < 40 ks) is dominated by forward shock of narrow jet, with t j =2800 s, θ j =0.4°, E γ ~2.1x10 50 ergs 2 nd X-ray broken power-law (t > 40 ks) is dominated by forward shock of wide jet with t j =1 Ms, θ j =8°, E γ ~1.9x10 50 ergs

Afterglow Models 1 st optical segment (t<50 s) is tail of prompt emission 2 nd optical segment (50 s < t < 800 s) consistent with high latitude emission (α=2+β)from reverse shock of the wide jet 3 rd optical segment (t > 800 s) is due to the forward shock of wide jet Closure relations require Wind environment, p>2, requires 3 spectral components

Afterglow Tail of Prompt Emission WJRS WJFS NJFS WJFS

Afterglow Modeling Temporal behavior relatively straightforward What about spectral behavior? Sari, Piran, Narayan (1998)

Alternative Afterglow Model Complex Density Medium Model

Afterglow Models Complex Density Medium Model t t t

νcνc

ν c ~t n~r -2.5 ν c ~t n~r +4.0

Complex Density Medium Model Relatively straightforward single component spectral model with moving cooling frequency Temporal decays cannot be explained in context of closure relations even with non- standard environments Perhaps whole light curve is post-jet break, but still hard to reconcile More detailed modeling required to possibly make this model work

Conclusions To get this bright optical flash, need high γ-ray isotropic energy, wind environment, very high initial Γ Reverse shock was at least mildly relativistic, but outflow must have been moderately magnetized when crossing RS or optical emission would have been suppressed Best afterglow model is two-component jet, which leads to interpretation of wind environment and is consistent with properties of prompt emission If all GRBs were structured like B, the probability of observing along narrow jet is ~10 -3, corresponding to every years B had special (but not unreasonable) set of parameters, and also had special observational conditions Consequently challenges standard models, and will surely be studied for years to come