Visual Pathways W. W. Norton Primary cortex maintains distinct pathways – functional segregation M and P pathways synapse in different layers Ascending.

Slides:



Advertisements
Similar presentations
Perception Chapter 4 Visual Process beyond the Retina
Advertisements

Chapter 4: The Visual Cortex and Beyond
Read this article for Friday next week [1]Chelazzi L, Miller EK, Duncan J, Desimone R. A neural basis for visual search in inferior temporal cortex. Nature.
The Primary Visual Cortex
Higher Visual Areas Anatomy of higher visual areas
Midterm 1 Oct. 21 in class. Read this article by Wednesday next week!
The Visual System: Feature Detection Model Lesson 17.
Visual Sensation & Perception How do we see?. Structure of the eye.
Midterm 1 Oct. 6 in class Review Session after class on Monday – Location TBA.
Read this article for Friday next week [1]Chelazzi L, Miller EK, Duncan J, Desimone R. A neural basis for visual search in inferior temporal cortex. Nature.
Neural Correlates of Visual Awareness. A Hard Problem Are all organisms conscious?
Neural Correlates of Visual Awareness. A Hard Problem Are all organisms conscious?
Lesions of Retinostriate Pathway Lesions (usually due to stroke) cause a region of blindness called a scotoma Identified using perimetry note macular sparing.
Test on Friday!. Lesions of Retinostriate Pathway Lesions (usually due to stroke) cause a region of blindness called a scotoma Identified using perimetry.
Higher Processing of Visual Information: Lecture III
Get this article [1]Chelazzi L, Miller EK, Duncan J, Desimone R. A neural basis for visual search in inferior temporal cortex. Nature 1993; 363:
Read this article for Friday Oct 21! Trends in Neuroscience (2000) 23, Hint #1: there are at least 3 ways of getting this article Hint #2: none.
Visual Neuron Responses This conceptualization of the visual system was “static” - it did not take into account the possibility that visual cells might.
Exam in 12 days in class assortment of question types including written answers.
Get this article [1]Chelazzi L, Miller EK, Duncan J, Desimone R. A neural basis for visual search in inferior temporal cortex. Nature 1993; 363:
Use a pen on the test. The distinct modes of vision offered by feedforward and recurrent processing Victor A.F. Lamme and Pieter R. Roelfsema.
Writing Workshop Find the relevant literature –Use the review journals as a first approach e.g. Nature Reviews Neuroscience Trends in Neuroscience Trends.
MENTAL REPRESENATIONS Neur 3680 Midterm I review.
Searching for the NCC We can measure all sorts of neural correlates of these processes…so we can see the neural correlates of consciousness right? So what’s.
Midterm 1 Oct. 21 in class. Read this article by Wednesday next week!
Read Lamme (2000) TINS article for Wednesday. Visual Pathways V1 is, of course, not the only visual area (it turns out it’s not even always “primary”)
Dorsal and Ventral Pathways
Question Examples If you were a neurosurgeon and you needed to take out part of the cortex of a patient, which technique would you use to identify the.
Read this article for Friday Oct 21! Trends in Neuroscience (2000) 23, Hint #1: there are at least 3 ways of getting this article Hint #2: none.
Post-test review session Tuesday Nov in TH241.
Final Review Session Neural Correlates of Visual Awareness Mirror Neurons
Exam 1 week from today in class assortment of question types including written answers.
How does the visual system represent visual information? How does the visual system represent features of scenes? Vision is analytical - the system breaks.
Higher Processing of Visual Information: Lecture I --- April 2, 2007 by Mu-ming Poo 1.Overview of the Mammalian Visual System 2.Structure of Lateral Geniculate.
The Retina has layers of cells
Visual Pathways visual hemifields project contralaterally –exception: bilateral representation of fovea! Optic nerve splits at optic chiasm about 90 %
Visual Cognition I basic processes. What is perception good for? We often receive incomplete information through our senses. Information can be highly.
Color vision Different cone photo- receptors have opsin molecules which are differentially sensitive to certain wavelengths of light – these are the physical.
A.F. Lamme and Pieter R. Roelfsema
Visual Cognition I basic processes. What is perception good for? We often receive incomplete information through our senses. Information can be highly.
PY202 Overview. Meta issue How do we internalise the world to enable recognition judgements to be made, visual thinking, and actions to be executed.
Chapter 10 The Central Visual System. Introduction Neurons in the visual system –Neural processing results in perception Parallel pathway serving conscious.
Higher Processing of Visual Information: Lecture II
Basic Processes in Visual Perception
The visual system Lecture 1: Structure of the eye
Laurent Itti: CS599 – Computational Architectures in Biological Vision, USC Lecture 5: Introduction to Vision 2 1 Computational Architectures in.
Lateral Geniculate Nucleus (LGN) 1.Overview of central visual pathway 2.Projection from retina to LGN 3.LGN layers: P and M pathways 4.LGN receptive fields.
THE VISUAL SYSTEM: EYE TO CORTEX Outline 1. The Eyes a. Structure b. Accommodation c. Binocular Disparity 2. The Retina a. Structure b. Completion c. Cone.
Occipital Lobe Videos: –Brain modules 8,9,10, 11 –Consciousness- Blindsight.
Chapter 3: Neural Processing and Perception. Neural Processing and Perception Neural processing is the interaction of signals in many neurons.
Mind, Brain & Behavior Wednesday February 19, 2003.
Higher Visual Areas 1.Anatomy of higher visual areas 2.Two processing pathways - “ Where ” pathway for motion and depth - “ What ” pathway for form and.
Week 4 Motion, Depth, Form: Cormack Wolfe Ch 6, 8 Kandell Ch 27, 28 Advanced readings: Werner and Chalupa Chs 49, 54, 57.
Last Lecture Organization of the Visual System continued Organization of the Visual System continued Blindsight Blindsight What/Where pathways What/Where.
Midterm 1 Oct. 6 in class Review Session after class on Monday.
Outline Of Today’s Discussion 1.LGN Projections & Color Opponency 2.Primary Visual Cortex: Structure 3.Primary Visual Cortex: Individual Cells.
Biological Modeling of Neural Networks: Week 10 – Neuronal Populations Wulfram Gerstner EPFL, Lausanne, Switzerland 10.1 Cortical Populations - columns.
Cogs1 mapping space in the brain Douglas Nitz – Feb. 19, 2009 any point in space is defined relative to other points in space.
Chapter 4: Cortical Organization
CHAPTER 10 Vision and visual perception Form Vision.
1 Perception and VR MONT 104S, Spring 2008 Lecture 3 Central Visual Pathways.
Neural Correlates of Visual Awareness. A Hard Problem Are all organisms conscious?
Processing visual information - pathways
Psychology 304: Brain and Behaviour Lecture 28
Visual Cortex   Vision Science Lectures in Ophthalmology Curtis Baker.
Optic Nerve Projections
The Visual System: Higher Cortical Mechanisms
Mind, Brain & Behavior Wednesday February 12, 2003.
Fundamentals of Sensation and Perception
From Functional Architecture to Functional Connectomics
Presentation transcript:

Visual Pathways W. W. Norton Primary cortex maintains distinct pathways – functional segregation M and P pathways synapse in different layers Ascending (i.e. feed-forward) projections synapse in middle layers Descending (i.e. feed-back) projections synapse in superfical and deep layers

Visual Pathways Visual scene is represented: –Retinotopically thus… –spatiotopically = Fovea Tootell R B H et al. PNAS 1998;95:

How does the visual system represent visual information? How does the visual system represent features of scenes? Vision is analytical - the system breaks down the scene into distinct kinds of features and represents them in functionally segregated pathways

Visual Neuron Responses The notion of a receptive field is fundamental in vision science –A neuron’s receptive field is the region in space in which a stimulus will evoke a response from that neuron –Receptive field properties vary widely across visual neurons and are never just “ON” or “OFF” –Unit recordings in LGN reveal a centre/surround receptive field

Visual Neuron Responses Unit recordings in LGN reveal a centre/surround receptive field many arrangements exist, but the “classical” RF has an excitatory centre and an inhibitory surround these receptive fields tend to be circular - they are not orientation specific How could the outputs of such cells be transformed into a cell with orientation specificity?

Visual Neuron Responses LGN cells converge on “simple” cells in V1 imparting orientation (and location) specificity

Visual Neuron Responses LGN cells converge on “simple” cells in V1 imparting orientation (and location) specificity Again, information is physically seperated into a “map”

Visual Neuron Responses LGN cells converge on simple cells in V1 imparting orientation specificity Thus we begin to see how a simple representation – orientations of lines - can be maintained in the visual system –increase in spike rate of specific neurons indicates presence of a line with a specific orientation at a specific location on the retina –Reality is that spike rate probably is only one part of the story: information is coded in many ways e.g. Relative timing Graded potentials

The Role of “Extrastriate” Areas Different visual cortex regions contain cells with different tuning properties

The Role of “Extrastriate” Areas Consider two plausible models: 1.System is hierarchical: –each area performs some elaboration on the input it is given and then passes on that elaboration as input to the next “higher” area 2.System is analytic and parallel: –different areas elaborate on different features of the input

The Role of “Extrastriate” Areas Functional imaging (PET) investigations of motion and colour selective visual cortical areas Zeki et al. Subtractive Logic –stimulus alternates between two scenes that differ only in the feature of interest (i.e. colour, motion, etc.)

The Role of “Extrastriate” Areas Identifying colour sensitive regions Subtract Voxel intensities during these scans… …from voxel intensities during these scans …etc. Time ->

The Role of “Extrastriate” Areas result –voxels are identified that are preferentially selective for colour –these tend to cluster in anterior/inferior occipital lobe

The Role of “Extrastriate” Areas similar logic was used to find motion-selective areas Subtract Voxel intensities during these scans… …from voxel intensities during these scans …etc. Time -> MOVING STATIONARY MOVING STATIONARY

The Role of “Extrastriate” Areas result –voxels are identified that are preferentially selective for motion –these tend to cluster in superior/dorsal occipital lobe near TemporoParietal Junction –Akin to Human V5

The Role of “Extrastriate” Areas Thus PET studies doubly-dissociate colour and motion sensitive regions

The Role of “Extrastriate” Areas V4 and V5 are doubly-dissociated in lesion literature:

The Role of “Extrastriate” Areas V4 and V5 are doubly-dissociated in lesion literature: –achromatopsia (color blindness): there are many forms of color blindness cortical achromatopsia arises from lesions in the area of V4 singly dissociable from motion perception deficit - patients with V4 lesions have other visual problems, but motion perception is substantially spared

The Role of “Extrastriate” Areas V4 and V5 are doubly-dissociated in lesion literature: –akinetopsia (motion blindness): bilateral lesions to area V5 (extremely rare) severe impairment in judging direction and velocity of motion - especially with fast-moving stimuli visual world appeared to progress in still frames similar effects occur when M-cell layers in LGN are lesioned in monkeys

Visual Neuron Responses Edges are important because they are the boundaries between objects and the background or objects and other objects

Visual Neuron Responses This conceptualization of the visual system was “static” - it did not take into account the possibility that visual cells might change their response selectivity over time –Logic went like this: if the cell is firing, its preferred line/edge must be present and… –if the preferred line/edge is present, the cell must be firing We will encounter examples in which these don’t apply! Representing boundaries must be more complicated than simple edge detection!

Visual Neuron Responses Boundaries between objects can be defined by color rather than brightness

Visual Neuron Responses Boundaries between objects can be defined by texture

Visual Neuron Responses Boundaries between objects can be defined by motion and depth cues