X z y   r but  vary 0 - 180 o & 0 - 360 o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  =

Slides:



Advertisements
Similar presentations
Chapter 6 The Hydrogen Atom.
Advertisements

Today’s Objectives: Students will be able to:
The Quantum Mechanics of Simple Systems
Modern Physics 342 References : 1.Modern Physics by Kenneth S. Krane., 2 nd Ed. John Wiley & Sons, Inc. 2.Concepts of Modern Physics by A. Beiser, 6 th.
CHAPTER 7 The Hydrogen Atom
The Hydrogen Atom. Model The “orbitals” we know from general chemistry are wave functions of “hydrogen-like” atoms Hydrogen-like: any atom, but it has.
18_12afig_PChem.jpg Rotational Motion Center of Mass Translational Motion r1r1 r2r2 Motion of Two Bodies Each type of motion is best represented in its.
Bohr’s model seems to only work for one electron atoms, or ions. i.e. H, He +, Li 2+, …. It can’t account for electron-electron interactions properly The.
Bohr model only works for one electron atom, or ions. i.e. H, He +, Li 2+, …. It can’t account for electron-electron interactions properly The wave “like”
Hydrogen Atom in Wave Mechanics The good news is that the Schroedinger equation for the hydrogen atom has an EXACT ANALYTICAL solution! (this is one of.
P461 - Molecules 21 MOLECULAR ENERGY LEVELS Have Schrod. Eq. For H 2 (same ideas for more complicated). For proton and electron 1,2 real solution: numeric.
WAVE MECHANICS (Schrödinger, 1926) The currently accepted version of quantum mechanics which takes into account the wave nature of matter and the uncertainty.
3D Schrodinger Equation
Lecture 17: The Hydrogen Atom
1 7.1Application of the Schrödinger Equation to the Hydrogen Atom 7.2Solution of the Schrödinger Equation for Hydrogen 7.3Quantum Numbers 7.4Magnetic Effects.
Rigid Bodies Rigid Body = Extended body that moves as a unit Internal forces maintain body shape Mass Shape (Internal forces keep constant) Volume Center.
r2 r1 r Motion of Two Bodies w k Rc
Physics 1A, Section 2 November 15, Translation / Rotation translational motionrotational motion position x angular position  velocity v = dx/dt.
Classical Model of Rigid Rotor
Quantum Theory of Atoms The Bohr theory of Hydrogen(1913) cannot be extended to other atoms with more than one electron we have to solve the Schrödinger.
Rotational Spectroscopy Born-Oppenheimer Approximation; Nuclei move on potential defined by solving for electron energy at each set of nuclear coordinates.
Physics 430: Lecture 22 Rotational Motion of Rigid Bodies
Quantum mechanics review. Reading for week of 1/28-2/1 – Chapters 1, 2, and 3.1,3.2 Reading for week of 2/4-2/8 – Chapter 4.
Chem 430 Particle on a ring 09/22/2011. Richard Feynman Quantum mechanics is based on assumptions and the wave-particle duality The nature of wave-particle.
The Hydrogen Atom Quantum Physics 2002 Recommended Reading: Harris Chapter 6, Sections 3,4 Spherical coordinate system The Coulomb Potential Angular Momentum.
Angular Momentum. What was Angular Momentum Again? If a particle is confined to going around a sphere: At any instant the particle is on a particular.
The Hydrogen Atom continued.. Quantum Physics 2002 Recommended Reading: Harris Chapter 6, Sections 3,4 Spherical coordinate system The Coulomb Potential.
Central Force Motion Chapter 8
Angular Motion, General Notes
Chap 12 Quantum Theory: techniques and applications Objectives: Solve the Schrödinger equation for: Translational motion (Particle in a box) Vibrational.
PHYS 1441 – Section 002 Lecture #22 Monday, April 22, 2013 Dr. Jaehoon Yu Work, Power and Energy in Rotation Angular Momentum Angular Momentum Conservation.
Ch 9 pages Lecture 23 – The Hydrogen Atom.
1 He and hydrogenoid ions The one nucleus-electron system.
Chapter 3: Central Forces Introduction Interested in the “2 body” problem! Start out generally, but eventually restrict to motion of 2 bodies interacting.
Chapter 17 PLANE MOTION OF RIGID BODIES: ENERGY AND MOMENTUM METHODS
LECTURE 21 THE HYDROGEN AND HYDROGENIC ATOMS PHYSICS 420 SPRING 2006 Dennis Papadopoulos.
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 18 A Quantum Mechanical Model for the Vibration and Rotation of Molecules.
Brief Review (Quantum Chemistry) Concepts&Principles Techniques&Applications Questions&Problems.
Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, Nov. 13, 2013 Dr. Jaehoon Yu Solutions.
Physics 2170 – Spring Rest of semester Investigate hydrogen atom (Wednesday 4/15 and Friday 4/17) Learn.
Physics Lecture 14 3/22/ Andrew Brandt Monday March 22, 2010 Dr. Andrew Brandt 1.Hydrogen Atom 2.HW 6 on Ch. 7 to be assigned Weds 3/24.
Monday, Nov. 12, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Monday, Nov. 12, 2012 Dr. Jaehoon Yu Quantum Numbers.
Quantum Chemistry: Our Agenda (along with Engel)
MS310 Quantum Physical Chemistry
Standing Waves Reminder Confined waves can interfere with their reflections Easy to see in one and two dimensions –Spring and slinky –Water surface –Membrane.
Particle on a Ring An introduction to Angular Momentum Quantum Physics II Recommended Reading: Harris, Chapter 6.
Atomic Structure The theories of atomic and molecular structure depend on quantum mechanics to describe atoms and molecules in mathematical terms.
Atomic Orbitals on a Computer
MS310 Quantum Physical Chemistry
Physical Chemistry III (728342) The Schrödinger Equation
2.1Application of the Schrödinger Equation to the Hydrogen Atom 2.2Solution of the Schrödinger Equation for Hydrogen 2.3Quantum Numbers 2.4Magnetic Effects.
Vibrational Motion Harmonic motion occurs when a particle experiences a restoring force that is proportional to its displacement. F=-kx Where k is the.
The Hydrogen Atom The only atom that can be solved exactly.
CHAPTER 5 The Hydrogen Atom
MODULE 6 ANGULAR MOTION AND ANGULAR MOMENTUM In Module 3 we solved the Schrödinger equation for motion in a circular trajectory about a central, fixed.
CHAPTER 7 The Hydrogen Atom
Harmonic Oscillator and Rigid Rotator
Quantum Theory of Hydrogen Atom
Schrodinger’s Equation for Three Dimensions
The Hydrogen Atom The only atom that can be solved exactly.
3D Schrodinger Equation
Diatomic molecules
Central Potential Another important problem in quantum mechanics is the central potential problem This means V = V(r) only This means angular momentum.
QM2 Concept Test 2.1 Which one of the following pictures represents the surface of constant
Quantum Two.
Quantum Theory of Hydrogen Atom
Quantum Two Body Problem, Hydrogen Atom
Physical Chemistry Week 12
 .
The Rigid Rotor.
Presentation transcript:

x z y   r but  vary o & o r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 ) ½  = Acos(z/r)  = Asin{y/(rsin  )} dV = d  = r 2 sin  dr d  d  or ….. dV(shell) = dx dy dz = 4  r 2 sin  dr d  d  Polar Coordinates

CM - 2D – Particle on a ring “If a particle is confined to the xy plane, then it has angular momentum along the z axis. angular momentum: L z = mvr L z = x p y – y p x E = K + V = K = ½mv 2 (m/m) = p 2 /2m = L z 2 /2mr 2 = L z 2 /2I moment of inertia: I = mr 2

QM - 2D – Particle on a ring “If a particle is confined to the xy plane, then it has angular momentum along the z axis. Ĺ z = x p y – y p x = -iħ d( )/d  Ĥ  = Ĺ z 2 /2I  = -ħ 2 /2I d 2  /d  2  = E  E = m 2 ħ 2 /2I  = Ne im   = (2  ) -1/2 e im  N 2 ∫ 0 2  e -im  e im  d  = 1 quantum #, m (or m l ) = 0, ±1, ±2, ±3, ….

2D – Particle on a ring  = (2  ) -1/2 e im  CM E = ½mv 2 = p 2 /2m = J 2 /2I (I = mr 2 ) QM E = L 2 /2I (I = mr 2 ) L = hr/ = m l ħ = hr/L E = (m l ħ) 2 /2I moon data m = 7.3 x 1022 kg v = 1,020 m s -1 r = km 1 revolution = 27.3 days What is I? What is E (CM)? What is J? What quantum state m l ?

Goal - Separate problem into 2 distinct one-particle problems. Two Particle Problems Particle 1:Mass = m 1 + m 2 Position = center of mass XYZ e.g. X = (m 1 x 1 + m 2 x 2 )/(m 1 + m 2 ) example: translational motion of diatomic molecule (O 2 ) Particle 2:Mass =  = m 1 m 2 /(m 1 + m 2 ) Position = position of smaller particle relative to the center of mass use x, y, z or (best) polar coordinates; r,  example: rotation of 2 bodies attached at fixed distance (O 2 )

x e.g. H 2 molecule m 1 = m 1 + m 2 ~ 2 amu Two Particle Problems x = (m 1 x 1 + m 2 x 2 )/(m 1 + m 2 ) x 1 =  m 2 = m 1 m 2 /(m 1 + m 2 ) = ½amu x cm = 0 r 2 = ½ bond distance = 0.60 Å e.g. H atom m 1 = m 1 + m 2 ~ 1 amu x = (m 1 x 1 + m 2 x 2 )/(m 1 + m 2 ) x x 1 ~  m 2 = m 1 m 2 /(m 1 + m 2 ) ~ m e x cm ~ -1 = r 2 ~ r = Å m 2 = 9.04 x kg m 2 = 1.67 x kg

V = 0 d = constant Internal motion is rotation only no vibration occurs RIGID ROTOR  rot

r 2 = x 2 + y 2 + z 2 x = r sin  cos  y = r sin  sin  z = r cos  r = (x 2 + y 2 + z 2 )  = Acos(z/r)  = Asin{y/(rsin  )} d  = r 2 dr sin  d  d  Ĥ  = -ħ 2 /2I {d 2 ( )/d  2 + cot  d( )/d  + 1/sin 2  d 2 ( )/d  2 } & cot  cos  sin  Ĥ  = Ĺ 2 /2I + V ˆ 3D – rotations (fixed r) rigid rotor o   r 0 – 180 o Ĺ 2 = -ħ 2 (d 2 ( )/d  2 + cot  d( )/d  + 1/sin 2 d  d 2 ( )/d  2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d  L z  = m ℓ ħ

 m l = (2  ) -1/2 exp(im l  )  l,m l associated Legendre polynomials  0,0 = 2 -1/2  1,0 = (3/2) 1/2 cos   1,1 = (3/4) 1/2 sin   2,0 = (5/8) 1/2 (3cos 2   2,1 = (15/4) 1/2 sin  cos   2,2 = (15/16) 1/2 sin 2   rot =  m l  l,m l After solving Ĥ  = E rot .... where l = 0, 1, 2, … degeneracy = 2 l + 1 m l = - l, - l +1, - l +2, l Ĥ  = -ħ 2 /2I {d 2 ( )/d  2 + cot  d( )/d  + 1/sin 2  d 2 ( )/d  2 } L = {ℓ(ℓ+ 1)} ½ ħ Ĺ 2 = -ħ 2 (d 2 ( )/d  2 + cot  d( )/d  + 1/sin 2 d  d 2 ( )/d  2 ) L = {ℓ(ℓ+ 1)} ½ ħ L z = m ℓ ħ Ĺ z = -iħ d( )/d  = m ℓ ħ E rot = E  + E  = { l ( l + 1)-m l 2 }(ħ 2 /2I) + m l 2 (ħ 2 /2I) = l ( l + 1)ħ 2 /2I I =  r 2

 m l = (2  ) -1/2 exp(im l  )  l,m l associated Legendre polynomials  0,0 = 2 -1/2  1,0 = (3/2) 1/2 cos   1,1 = (3/4) 1/2 sin   2,0 = (5/8) 1/2 (3cos 2   2,1 = (15/4) 1/2 sin  cos   2,2 = (15/16) 1/2 sin 2   rot =  m l  l,m l After solving Ĥ  = E rot .... where l = 0, 1, 2, … degeneracy = 2 l + 1 m l = - l, - l +1, - l +2, l Ĥ  = -ħ 2 /2I {d 2 ( )/d  2 + cot  d( )/d  + 1/sin 2  d 2 ( )/d  2 } E rot = E  + E  = { l ( l + 1)-m l 2 }(ħ 2 /2I) + m l 2 (ħ 2 /2I) = l ( l + 1)ħ 2 /2I I =  r 2 E   for E  = 0 since  0,0 = 2 -1/2 and E rot = = 0 E   for E  = Ĥ  -ħ 2 /2  [d 2 ( )/d    + cot  d( )/d  ]  = E    -ħ 2 /2  (3/2) 1/2 [d 2 (cos  )/d    + cot  d(cos  )/d  ] = E   cot  cos  sin   -ħ 2 /2  (3/2) 1/2 [-1  - cos  sin  sin  ]  -ħ 2 /2  -2)  ħ 2 /   E   ħ 2 /  and E rot = ħ 2 /  + 0 = ħ 2 /  = ( +1)ħ 2 /2I

angular momentum l = 0 m ℓ = 0 L = 0 L z = 0 Ĺ 2 = -ħ 2 (d 2 ( )/d  2 + cot  d( )/d  + 1/sin 2 d  d 2 ( )/d  2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d  = m ℓ ħ  rot =   (spherical harmonics) … is an eigenfunction of the Ĺ z and Ĺ 2 operators but not Ĺ, Ĺ x nor Ĺ y. The overall angular momentum scalar value is determined by (Ĺ 2 ) ½. Note that this is not a diagram indicating where the electron may be found. Rather it is a vector diagram representing the limitations on the values of the angular momentum of the electron. The electron with l = 0 (an s orbital) Has no z-component to its angular momentum – it is not confined to a circle.

angular momentum l = 0, 1 L = 2 1/2 ħ L z = +1ħ L = 0 L z = 0 L = 2 1/2 ħ L z = -1ħ Ĺ 2 = -ħ 2 (d 2 ( )/d  2 + cot  d( )/d  + 1/sin 2 d  d 2 ( )/d  2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d  = m ℓ ħ  rot =   (spherical harmonics) … is an eigenfunction of the Ĺ z and Ĺ 2 operators but not Ĺ, Ĺ x nor Ĺ y. The overall angular momentum scalar value is determined by (Ĺ 2 ) ½.

angular momentum l = 2 L = 6 1/2 ħ L z = +2ħ L = 6 1/2 ħ L z = +1ħ L = 6 1/2 ħ L z = 0 L = 6 1/2 ħ L z = -1ħ L = 6 1/2 ħ L z = -2ħ

The Hydrogen atom a 3D, 2 particle problem.  =  N  e  N is translational motion of H atom  e is electron motion relative to nucleus  e (r,  )  =  (  )  (  ) R (r) “Radial function” Spherical harmonics

Force between two charges in vacuum F = q 1 q 2 /(4  o r 2 ) (N = kg m s -2 ) V = F r = q 1 q 2 /(4  o r) (J = kg m 2 s -2 ) Ĥ  R  - ħ 2 /2  [ 1/r 2 d(r 2 d  /dr)/dr + 1/(r 2 sin  ) d(sin  d  / d  )/d  + 1/(r²sin²  ) d²  /d  ²] - Ze 2 /(4  o r) = E  Hamiltonian: Ĥ  V  = E   e (r,  )  = R (r)  (  )  (  ) V = -Ze 2 /(4  o r) Applies to H atom and any H-like ion with only 1 e -.  ( R (r)  (  )  (  ) ) VV

Spherical harmonics  (  )  (  ) These solutions are identical to the rigid rotor model Ĥ  -ħ 2 /2  [1/r 2 d (r 2 d  / d r)/ d r + 1/(r 2 sin  ) d (sin  d  / d  )/ d  + 1/(r²sin²  ) d ²  / d  ²] - Ze 2 /(4  o r) reduces to …… E SH = ħ 2 l ( l + 1)/2  r 2 ĤR = -ħ 2 /2  [1/r 2 d(r 2 dR/dr)/dr + {ħ 2 l ( l +1)/2  r 2 - Ze 2 /(4  o r)}R Ĥ  (r,  )  = Ĥ(  ℓ,mℓ (  )  mℓ (  ) ) + Ĥ R (r)

Ĥ R = -ħ 2 /2  [1/r 2 d(r 2 dR/dr)/dr + {ħ 2 l ( l +1)/2  r 2 - Ze 2 /(4  o r)}R As the solutions to the  function already existed in the form of the associated Legendre Polynomials ….. An exact solution to the Hamiltonian for R exists using pre-existing mathematics ….. the associated Laguerre Polynomials  n,ℓ,mℓ (r,  )  =  ℓ,mℓ (  )  mℓ (  ) R n,ℓ (r) These solutions contain the quantum numbers (n and ℓ) such that …. n = 1, 2, 3, ….. (principle quantum #) ℓ = 0, 1, … n – 1 (angular momentum q# as in  ) m ℓ = -ℓ, -ℓ+1, … +ℓ (magnetic quantum number as in  and 

R(r) = radial function R = cst * (n-1) th order polynomial in r * e -Zr/2a a = 4  o ħ 2 /  e 2 (units = m) which happens to equal the Bohr orbit radii (0.529Å for H)  n,ℓ,mℓ (r,  )  =  ℓ,mℓ (  )  mℓ (  ) R n,ℓ (r) ĤR  -ħ 2 /2  [1/r 2 d(r 2 dR / d r)/ d r+ { ħ 2 l ( l +1)/2  r 2 - Ze 2 /(4  o r)}R = ER E  Z 2 e 4  /(8  o 2 h 2 n 2 ) eq 11.66

What is  n l m ?  100 = 1s = (  -½ ) (Z/a) 3/2 exp(-Zr/a)  200 = 2s = (32  -½ (Z/a) 3/2 {2-(Zr/a)} exp(-Zr/a)  210 = 2p z = (32  ) -½ (Z/a) 5/2 r exp(-Zr/2a) (cos  )  211 = (64  ) -½ (Z/a) 5/2 r exp(i  ) exp(-Zr/2a) sin   21-1 = (64  -½ ) (Z/a) 5/2 r exp(-i  ) exp(-Zr/2a) sin  2p x = 2 -1/2 (   21-1 )2p y = -i2 -1/2 (   21-1 ) If any 2 wave functions satisfy H and give the same E, then any linear combination of those 2 wave functions (renormalized) will also give the same E. 2p x = (32  -½ (Z/a) 5/2 r exp(-Zr/2a) sin  cos  2p y = (32  -½ (Z/a) 5/2 r exp(-Zr/2a) sin  sin  2p z = (32  -½ (Z/a) 5/2 r exp(-Zr/2a) cos  a = 4  o ħ 2 /  e 2 (units = m)

1s 2s 3s H-atom – Radial Functions

2p 3p 3d H-atom – Radial Functions

dV = dx dy dz = d  = 4  r 2 dr sin  d  d  dV = dx dy dz dV dV (cube) = dv x dv y dv z = ? dr dV = 4  (r+dr) 3 /3 – 4  r 3 /3 = 4  r 2 dr 4  r 3 /3 + 4  r 2 dr + 4  rdr  dr 3 /3

r2R2r2R2 1s 2s 3s Probability = r 2 R 2  R 2 Even though the radial function for s orbitals is maximal at r = 0 the r 2 term in d , drops the probability to 0 at the nucleus. r2R2r2R2 r/a

r2R2r2R2 1s 2s 3s  1s = (  -½ ) (1/a) 3/2 exp(-r/a) r/a r mp = r when d (r 2  1s )dr = 0 = a

r2R2r2R2 2p 3p 3d

Ĥ  -ħ 2 /2  [1/r 2 d (r 2 d  / d r)/ d r + 1/(r 2 sin  ) d (sin  d  / d  )/ d  + 1/(r²sin²  ) d ²  / d  ²] - Ze 2 /(4  o r) = E  and =  E =  Z 2 e 4  /(8  o 2 h 2 n 2 ) eq eV

Probability = ∫  e *  e d  = 4  ∫ r (r+dr) r 2 R dr ∫  (  +d  ) sin  d  ∫  (  +d  ) d   e (r,  )  =  (  )  (  ) R (r) 1 = 4  ∫ 0 ∞ r 2 R dr ∫   sin  d  ∫   d  =11 1 prob = 4  ∫ r (r+dr) r 2 R dr (over all space)

Probability = ∫  e *  e d  Prob = 4  ∫ 0 0.1Å r 2 R 2 dr = 4  ∫ a r 2 R 2 dr 51 R = 2 (1/a) 3/2 exp(-r/a) R 2 = 4/a 3 exp(-2r/a) Prob = 16  a 3  ∫ a r 2 exp(-2r/a) dr ∫ r 2 exp(-2r/a) dr = (-ar 2 e -2r/a )/2 – (-a  r e -2r/a dr) = (-ar 2 e -2r/a )/2 – (-a a 2 /4 e -2r/a (-2r/a – 1) ] a  x m e cx dx = (x m e cx )/c – m/c  x (m-1) e cx dx  x 2 e cx dx = (x 2 e cx )/c – 2/c  x e cx dx  x e cx dx = e cx )/c 2 (cx – 1) c = -2/a Prob = 4  4  a 3  [(-ar 2 e -2r/a )/2 – (-a a 2 /4 e -2r/a (-2r/a – 1) ] a a (Å)Zr-Zr/aA2A2 e -2zr/a r 2 /b-2r/b 2 2/b 3 e -zr/a Prob E E E E E E E E E E E E-01

What is an orbital? the size of the orbital depends on confidence level desired. e.g.....  0 r r 2 R dr *  0  sin   d  *      d  = 0.9 … says that the probability is 90% of finding e - within the distance r of the nucleus. r is different at different  &  angles for non s orbitals. The shape of an orbital is the volume enclosed by a surface of constant probability density =  |  2 | d  a one electron spatial wave function

 100 /1s(  -1/2  (Z/a) 3/2 exp(-Zr/a)  200 /2s(32  -1/2 (Z/a) 3/2 (2-Zr/a) exp(-Zr/2a)  21-1 (64  -1/2 (Z/a) 5/2 sin  exp(-i  ) r exp(-Zr/2a)  211 (64  -1/2 (Z/a) 5/2 sin  exp(i  ) r exp(-Zr/2a) 2p x (32  -1/2 (Z/a) 5/2 r exp(-Zr/2a) sin  cos  2p y (32  -1/2 (Z/a) 5/2 r exp(-Zr/2a) sin  sin   210 /2p z (32  -1/2 (Z/a) 5/2 r exp(-Zr/2a) cos  (2p x ) 2 (32  -1 (Z/a) 5 r 2 exp(-Zr/a) sin 2  cos 2  (2p y ) 2 (32  -1 (Z/a) 5 r 2 exp(-Zr/a) sin 2  sin 2  (2p z ) 2 (32  -1 (Z/a) 5 r 2 exp(-Zr/a) cos 2  Prob =  |  2 | d   0 r r 2 R dr *  0  sin   d  *      d  = 0.9

r/a Prob:  = 90 &  = 0 r22r22 2p x 2s 2p y & 2p z

r/a Prob:  = 90 &  = 90 r22r22 2p y 2s 2p x & 2p z

r/a Prob:  = 45 &  = 35 r22r22 2p y 2p x 2p z 2s 1s

angular momentum l = 0 m ℓ = 0 L = 0 L z = 0 Ĺ 2 = -ħ 2 (d 2 ( )/d  2 + cot  d( )/d  + 1/sin 2 d  d 2 ( )/d  2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d  = m ℓ ħ  rot =   (spherical harmonics) … is an eigenfunction of the Ĺ z and Ĺ 2 operators but not Ĺ, Ĺ x nor Ĺ y. The overall angular momentum scalar value is determined by (Ĺ 2 ) ½.

angular momentum l = 1 m ℓ = 0 L = √2ħ L z = 0 Ĺ 2 = -ħ 2 (d 2 ( )/d  2 + cot  d( )/d  + 1/sin 2 d  d 2 ( )/d  2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d  = m ℓ ħ Note that this is not a diagram indicating where the electron may be found. Rather it is a vector diagram representing the limitations on the values of the angular momentum of the electron. The electron with l = 0 (an s orbital) Has no z-component to its angular momentum – it is not confined to a circle.

angular momentum l = 0, 1 L = 2 1/2 ħ L z = +1ħ L = 0 L z = 0 L = 2 1/2 ħ L z = -1ħ Ĺ 2 = -ħ 2 (d 2 ( )/d  2 + cot  d( )/d  + 1/sin 2 d  d 2 ( )/d  2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d  = m ℓ ħ  rot =   (spherical harmonics) … is an eigenfunction of the Ĺ z and Ĺ 2 operators but not Ĺ, Ĺ x nor Ĺ y. The overall angular momentum scalar value is determined by (Ĺ 2 ) ½.

angular momentum l = 2 L = 6 1/2 ħ L z = +2ħ L = 6 1/2 ħ L z = +1ħ L = 6 1/2 ħ L z = 0 L = 6 1/2 ħ L z = -1ħ L = 6 1/2 ħ L z = -2ħ