x z y r but vary o & o r 2 = x 2 + y 2 + z 2 x = r sin cos y = r sin sin z = r cos r = (x 2 + y 2 + z 2 ) ½ = Acos(z/r) = Asin{y/(rsin )} dV = d = r 2 sin dr d d or ….. dV(shell) = dx dy dz = 4 r 2 sin dr d d Polar Coordinates
CM - 2D – Particle on a ring “If a particle is confined to the xy plane, then it has angular momentum along the z axis. angular momentum: L z = mvr L z = x p y – y p x E = K + V = K = ½mv 2 (m/m) = p 2 /2m = L z 2 /2mr 2 = L z 2 /2I moment of inertia: I = mr 2
QM - 2D – Particle on a ring “If a particle is confined to the xy plane, then it has angular momentum along the z axis. Ĺ z = x p y – y p x = -iħ d( )/d Ĥ = Ĺ z 2 /2I = -ħ 2 /2I d 2 /d 2 = E E = m 2 ħ 2 /2I = Ne im = (2 ) -1/2 e im N 2 ∫ 0 2 e -im e im d = 1 quantum #, m (or m l ) = 0, ±1, ±2, ±3, ….
2D – Particle on a ring = (2 ) -1/2 e im CM E = ½mv 2 = p 2 /2m = J 2 /2I (I = mr 2 ) QM E = L 2 /2I (I = mr 2 ) L = hr/ = m l ħ = hr/L E = (m l ħ) 2 /2I moon data m = 7.3 x 1022 kg v = 1,020 m s -1 r = km 1 revolution = 27.3 days What is I? What is E (CM)? What is J? What quantum state m l ?
Goal - Separate problem into 2 distinct one-particle problems. Two Particle Problems Particle 1:Mass = m 1 + m 2 Position = center of mass XYZ e.g. X = (m 1 x 1 + m 2 x 2 )/(m 1 + m 2 ) example: translational motion of diatomic molecule (O 2 ) Particle 2:Mass = = m 1 m 2 /(m 1 + m 2 ) Position = position of smaller particle relative to the center of mass use x, y, z or (best) polar coordinates; r, example: rotation of 2 bodies attached at fixed distance (O 2 )
x e.g. H 2 molecule m 1 = m 1 + m 2 ~ 2 amu Two Particle Problems x = (m 1 x 1 + m 2 x 2 )/(m 1 + m 2 ) x 1 = m 2 = m 1 m 2 /(m 1 + m 2 ) = ½amu x cm = 0 r 2 = ½ bond distance = 0.60 Å e.g. H atom m 1 = m 1 + m 2 ~ 1 amu x = (m 1 x 1 + m 2 x 2 )/(m 1 + m 2 ) x x 1 ~ m 2 = m 1 m 2 /(m 1 + m 2 ) ~ m e x cm ~ -1 = r 2 ~ r = Å m 2 = 9.04 x kg m 2 = 1.67 x kg
V = 0 d = constant Internal motion is rotation only no vibration occurs RIGID ROTOR rot
r 2 = x 2 + y 2 + z 2 x = r sin cos y = r sin sin z = r cos r = (x 2 + y 2 + z 2 ) = Acos(z/r) = Asin{y/(rsin )} d = r 2 dr sin d d Ĥ = -ħ 2 /2I {d 2 ( )/d 2 + cot d( )/d + 1/sin 2 d 2 ( )/d 2 } & cot cos sin Ĥ = Ĺ 2 /2I + V ˆ 3D – rotations (fixed r) rigid rotor o r 0 – 180 o Ĺ 2 = -ħ 2 (d 2 ( )/d 2 + cot d( )/d + 1/sin 2 d d 2 ( )/d 2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d L z = m ℓ ħ
m l = (2 ) -1/2 exp(im l ) l,m l associated Legendre polynomials 0,0 = 2 -1/2 1,0 = (3/2) 1/2 cos 1,1 = (3/4) 1/2 sin 2,0 = (5/8) 1/2 (3cos 2 2,1 = (15/4) 1/2 sin cos 2,2 = (15/16) 1/2 sin 2 rot = m l l,m l After solving Ĥ = E rot .... where l = 0, 1, 2, … degeneracy = 2 l + 1 m l = - l, - l +1, - l +2, l Ĥ = -ħ 2 /2I {d 2 ( )/d 2 + cot d( )/d + 1/sin 2 d 2 ( )/d 2 } L = {ℓ(ℓ+ 1)} ½ ħ Ĺ 2 = -ħ 2 (d 2 ( )/d 2 + cot d( )/d + 1/sin 2 d d 2 ( )/d 2 ) L = {ℓ(ℓ+ 1)} ½ ħ L z = m ℓ ħ Ĺ z = -iħ d( )/d = m ℓ ħ E rot = E + E = { l ( l + 1)-m l 2 }(ħ 2 /2I) + m l 2 (ħ 2 /2I) = l ( l + 1)ħ 2 /2I I = r 2
m l = (2 ) -1/2 exp(im l ) l,m l associated Legendre polynomials 0,0 = 2 -1/2 1,0 = (3/2) 1/2 cos 1,1 = (3/4) 1/2 sin 2,0 = (5/8) 1/2 (3cos 2 2,1 = (15/4) 1/2 sin cos 2,2 = (15/16) 1/2 sin 2 rot = m l l,m l After solving Ĥ = E rot .... where l = 0, 1, 2, … degeneracy = 2 l + 1 m l = - l, - l +1, - l +2, l Ĥ = -ħ 2 /2I {d 2 ( )/d 2 + cot d( )/d + 1/sin 2 d 2 ( )/d 2 } E rot = E + E = { l ( l + 1)-m l 2 }(ħ 2 /2I) + m l 2 (ħ 2 /2I) = l ( l + 1)ħ 2 /2I I = r 2 E for E = 0 since 0,0 = 2 -1/2 and E rot = = 0 E for E = Ĥ -ħ 2 /2 [d 2 ( )/d + cot d( )/d ] = E -ħ 2 /2 (3/2) 1/2 [d 2 (cos )/d + cot d(cos )/d ] = E cot cos sin -ħ 2 /2 (3/2) 1/2 [-1 - cos sin sin ] -ħ 2 /2 -2) ħ 2 / E ħ 2 / and E rot = ħ 2 / + 0 = ħ 2 / = ( +1)ħ 2 /2I
angular momentum l = 0 m ℓ = 0 L = 0 L z = 0 Ĺ 2 = -ħ 2 (d 2 ( )/d 2 + cot d( )/d + 1/sin 2 d d 2 ( )/d 2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d = m ℓ ħ rot = (spherical harmonics) … is an eigenfunction of the Ĺ z and Ĺ 2 operators but not Ĺ, Ĺ x nor Ĺ y. The overall angular momentum scalar value is determined by (Ĺ 2 ) ½. Note that this is not a diagram indicating where the electron may be found. Rather it is a vector diagram representing the limitations on the values of the angular momentum of the electron. The electron with l = 0 (an s orbital) Has no z-component to its angular momentum – it is not confined to a circle.
angular momentum l = 0, 1 L = 2 1/2 ħ L z = +1ħ L = 0 L z = 0 L = 2 1/2 ħ L z = -1ħ Ĺ 2 = -ħ 2 (d 2 ( )/d 2 + cot d( )/d + 1/sin 2 d d 2 ( )/d 2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d = m ℓ ħ rot = (spherical harmonics) … is an eigenfunction of the Ĺ z and Ĺ 2 operators but not Ĺ, Ĺ x nor Ĺ y. The overall angular momentum scalar value is determined by (Ĺ 2 ) ½.
angular momentum l = 2 L = 6 1/2 ħ L z = +2ħ L = 6 1/2 ħ L z = +1ħ L = 6 1/2 ħ L z = 0 L = 6 1/2 ħ L z = -1ħ L = 6 1/2 ħ L z = -2ħ
The Hydrogen atom a 3D, 2 particle problem. = N e N is translational motion of H atom e is electron motion relative to nucleus e (r, ) = ( ) ( ) R (r) “Radial function” Spherical harmonics
Force between two charges in vacuum F = q 1 q 2 /(4 o r 2 ) (N = kg m s -2 ) V = F r = q 1 q 2 /(4 o r) (J = kg m 2 s -2 ) Ĥ R - ħ 2 /2 [ 1/r 2 d(r 2 d /dr)/dr + 1/(r 2 sin ) d(sin d / d )/d + 1/(r²sin² ) d² /d ²] - Ze 2 /(4 o r) = E Hamiltonian: Ĥ V = E e (r, ) = R (r) ( ) ( ) V = -Ze 2 /(4 o r) Applies to H atom and any H-like ion with only 1 e -. ( R (r) ( ) ( ) ) VV
Spherical harmonics ( ) ( ) These solutions are identical to the rigid rotor model Ĥ -ħ 2 /2 [1/r 2 d (r 2 d / d r)/ d r + 1/(r 2 sin ) d (sin d / d )/ d + 1/(r²sin² ) d ² / d ²] - Ze 2 /(4 o r) reduces to …… E SH = ħ 2 l ( l + 1)/2 r 2 ĤR = -ħ 2 /2 [1/r 2 d(r 2 dR/dr)/dr + {ħ 2 l ( l +1)/2 r 2 - Ze 2 /(4 o r)}R Ĥ (r, ) = Ĥ( ℓ,mℓ ( ) mℓ ( ) ) + Ĥ R (r)
Ĥ R = -ħ 2 /2 [1/r 2 d(r 2 dR/dr)/dr + {ħ 2 l ( l +1)/2 r 2 - Ze 2 /(4 o r)}R As the solutions to the function already existed in the form of the associated Legendre Polynomials ….. An exact solution to the Hamiltonian for R exists using pre-existing mathematics ….. the associated Laguerre Polynomials n,ℓ,mℓ (r, ) = ℓ,mℓ ( ) mℓ ( ) R n,ℓ (r) These solutions contain the quantum numbers (n and ℓ) such that …. n = 1, 2, 3, ….. (principle quantum #) ℓ = 0, 1, … n – 1 (angular momentum q# as in ) m ℓ = -ℓ, -ℓ+1, … +ℓ (magnetic quantum number as in and
R(r) = radial function R = cst * (n-1) th order polynomial in r * e -Zr/2a a = 4 o ħ 2 / e 2 (units = m) which happens to equal the Bohr orbit radii (0.529Å for H) n,ℓ,mℓ (r, ) = ℓ,mℓ ( ) mℓ ( ) R n,ℓ (r) ĤR -ħ 2 /2 [1/r 2 d(r 2 dR / d r)/ d r+ { ħ 2 l ( l +1)/2 r 2 - Ze 2 /(4 o r)}R = ER E Z 2 e 4 /(8 o 2 h 2 n 2 ) eq 11.66
What is n l m ? 100 = 1s = ( -½ ) (Z/a) 3/2 exp(-Zr/a) 200 = 2s = (32 -½ (Z/a) 3/2 {2-(Zr/a)} exp(-Zr/a) 210 = 2p z = (32 ) -½ (Z/a) 5/2 r exp(-Zr/2a) (cos ) 211 = (64 ) -½ (Z/a) 5/2 r exp(i ) exp(-Zr/2a) sin 21-1 = (64 -½ ) (Z/a) 5/2 r exp(-i ) exp(-Zr/2a) sin 2p x = 2 -1/2 ( 21-1 )2p y = -i2 -1/2 ( 21-1 ) If any 2 wave functions satisfy H and give the same E, then any linear combination of those 2 wave functions (renormalized) will also give the same E. 2p x = (32 -½ (Z/a) 5/2 r exp(-Zr/2a) sin cos 2p y = (32 -½ (Z/a) 5/2 r exp(-Zr/2a) sin sin 2p z = (32 -½ (Z/a) 5/2 r exp(-Zr/2a) cos a = 4 o ħ 2 / e 2 (units = m)
1s 2s 3s H-atom – Radial Functions
2p 3p 3d H-atom – Radial Functions
dV = dx dy dz = d = 4 r 2 dr sin d d dV = dx dy dz dV dV (cube) = dv x dv y dv z = ? dr dV = 4 (r+dr) 3 /3 – 4 r 3 /3 = 4 r 2 dr 4 r 3 /3 + 4 r 2 dr + 4 rdr dr 3 /3
r2R2r2R2 1s 2s 3s Probability = r 2 R 2 R 2 Even though the radial function for s orbitals is maximal at r = 0 the r 2 term in d , drops the probability to 0 at the nucleus. r2R2r2R2 r/a
r2R2r2R2 1s 2s 3s 1s = ( -½ ) (1/a) 3/2 exp(-r/a) r/a r mp = r when d (r 2 1s )dr = 0 = a
r2R2r2R2 2p 3p 3d
Ĥ -ħ 2 /2 [1/r 2 d (r 2 d / d r)/ d r + 1/(r 2 sin ) d (sin d / d )/ d + 1/(r²sin² ) d ² / d ²] - Ze 2 /(4 o r) = E and = E = Z 2 e 4 /(8 o 2 h 2 n 2 ) eq eV
Probability = ∫ e * e d = 4 ∫ r (r+dr) r 2 R dr ∫ ( +d ) sin d ∫ ( +d ) d e (r, ) = ( ) ( ) R (r) 1 = 4 ∫ 0 ∞ r 2 R dr ∫ sin d ∫ d =11 1 prob = 4 ∫ r (r+dr) r 2 R dr (over all space)
Probability = ∫ e * e d Prob = 4 ∫ 0 0.1Å r 2 R 2 dr = 4 ∫ a r 2 R 2 dr 51 R = 2 (1/a) 3/2 exp(-r/a) R 2 = 4/a 3 exp(-2r/a) Prob = 16 a 3 ∫ a r 2 exp(-2r/a) dr ∫ r 2 exp(-2r/a) dr = (-ar 2 e -2r/a )/2 – (-a r e -2r/a dr) = (-ar 2 e -2r/a )/2 – (-a a 2 /4 e -2r/a (-2r/a – 1) ] a x m e cx dx = (x m e cx )/c – m/c x (m-1) e cx dx x 2 e cx dx = (x 2 e cx )/c – 2/c x e cx dx x e cx dx = e cx )/c 2 (cx – 1) c = -2/a Prob = 4 4 a 3 [(-ar 2 e -2r/a )/2 – (-a a 2 /4 e -2r/a (-2r/a – 1) ] a a (Å)Zr-Zr/aA2A2 e -2zr/a r 2 /b-2r/b 2 2/b 3 e -zr/a Prob E E E E E E E E E E E E-01
What is an orbital? the size of the orbital depends on confidence level desired. e.g..... 0 r r 2 R dr * 0 sin d * d = 0.9 … says that the probability is 90% of finding e - within the distance r of the nucleus. r is different at different & angles for non s orbitals. The shape of an orbital is the volume enclosed by a surface of constant probability density = | 2 | d a one electron spatial wave function
100 /1s( -1/2 (Z/a) 3/2 exp(-Zr/a) 200 /2s(32 -1/2 (Z/a) 3/2 (2-Zr/a) exp(-Zr/2a) 21-1 (64 -1/2 (Z/a) 5/2 sin exp(-i ) r exp(-Zr/2a) 211 (64 -1/2 (Z/a) 5/2 sin exp(i ) r exp(-Zr/2a) 2p x (32 -1/2 (Z/a) 5/2 r exp(-Zr/2a) sin cos 2p y (32 -1/2 (Z/a) 5/2 r exp(-Zr/2a) sin sin 210 /2p z (32 -1/2 (Z/a) 5/2 r exp(-Zr/2a) cos (2p x ) 2 (32 -1 (Z/a) 5 r 2 exp(-Zr/a) sin 2 cos 2 (2p y ) 2 (32 -1 (Z/a) 5 r 2 exp(-Zr/a) sin 2 sin 2 (2p z ) 2 (32 -1 (Z/a) 5 r 2 exp(-Zr/a) cos 2 Prob = | 2 | d 0 r r 2 R dr * 0 sin d * d = 0.9
r/a Prob: = 90 & = 0 r22r22 2p x 2s 2p y & 2p z
r/a Prob: = 90 & = 90 r22r22 2p y 2s 2p x & 2p z
r/a Prob: = 45 & = 35 r22r22 2p y 2p x 2p z 2s 1s
angular momentum l = 0 m ℓ = 0 L = 0 L z = 0 Ĺ 2 = -ħ 2 (d 2 ( )/d 2 + cot d( )/d + 1/sin 2 d d 2 ( )/d 2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d = m ℓ ħ rot = (spherical harmonics) … is an eigenfunction of the Ĺ z and Ĺ 2 operators but not Ĺ, Ĺ x nor Ĺ y. The overall angular momentum scalar value is determined by (Ĺ 2 ) ½.
angular momentum l = 1 m ℓ = 0 L = √2ħ L z = 0 Ĺ 2 = -ħ 2 (d 2 ( )/d 2 + cot d( )/d + 1/sin 2 d d 2 ( )/d 2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d = m ℓ ħ Note that this is not a diagram indicating where the electron may be found. Rather it is a vector diagram representing the limitations on the values of the angular momentum of the electron. The electron with l = 0 (an s orbital) Has no z-component to its angular momentum – it is not confined to a circle.
angular momentum l = 0, 1 L = 2 1/2 ħ L z = +1ħ L = 0 L z = 0 L = 2 1/2 ħ L z = -1ħ Ĺ 2 = -ħ 2 (d 2 ( )/d 2 + cot d( )/d + 1/sin 2 d d 2 ( )/d 2 ) L = {ℓ(ℓ+ 1)} ½ ħ Ĺ z = -iħ d( )/d = m ℓ ħ rot = (spherical harmonics) … is an eigenfunction of the Ĺ z and Ĺ 2 operators but not Ĺ, Ĺ x nor Ĺ y. The overall angular momentum scalar value is determined by (Ĺ 2 ) ½.
angular momentum l = 2 L = 6 1/2 ħ L z = +2ħ L = 6 1/2 ħ L z = +1ħ L = 6 1/2 ħ L z = 0 L = 6 1/2 ħ L z = -1ħ L = 6 1/2 ħ L z = -2ħ