X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.

Slides:



Advertisements
Similar presentations
Masuda Flare: Remaining Problems on the Looptop Impulsive Hard X-ray Source in Solar Flares Satoshi Masuda (STEL, Nagoya Univ.)
Advertisements

RHESSI observations of LDE flares – extremely long persisting HXR sources Mrozek, T., Kołomański, S., Bąk-Stęślicka, U. Astronomical Institute University.
Thick Target Coronal HXR Sources Astrid M. Veronig Institute of Physics/IGAM, University of Graz, Austria.
Observations on Current Sheet and Magnetic Reconnection in Solar Flares Haimin Wang and Jiong Qiu BBSO/NJIT.
Energy Release and Particle Acceleration in Flares Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
R. P. Lin Physics Dept & Space Sciences Laboratory University of California, Berkeley The Solar System: A Laboratory for the Study of the Physics of Particle.
Solar flares and accelerated particles
Solar flare hard X-ray spikes observed by RHESSI: a statistical study Jianxia Cheng Jiong Qiu, Mingde Ding, and Haimin Wang.
Low-Energy Coronal Sources Observed with RHESSI Linhui Sui (CUA / NASA GSFC)
Concealed Ejecta: The Search for a Unarmed Flare Cameron Martus Solar Physics REU 2010 Montana State University Mentors Dana Longcope & Angela Des Jardins.
Hard X-Ray Footpoint Motion in Spectrally Distinct Solar Flares Casey Donoven Mentor Angela Des Jardins 2011 Solar REU.
Super-Hot Thermal Plasmas in Solar Flares
Relations between concurrent hard X-ray sources in solar flares M. Battaglia and A. O. Benz Presented by Jeongwoo Lee NJIT/CSTR Journal Club 2007 October.
RHESSI 2003 October 28 Time Histories Falling fluxes following the peak Nuclear/511 keV line flux delayed relative to bremsstrahlung Fit to 511 keV line.
+ Hard X-Ray Footpoint Motion and Progressive Hardening in Solar Flares Margot Robinson Mentor: Dr. Angela DesJardins MSU Solar Physics Summer REU, 2010.
MSU Solar Physics REU Jennifer O’Hara Heating of Flare Loops With Observationally Constrained Heating Functions Advisors Jiong Qiu, Wenjuan Liu.
Sub-THz Component of Large Solar Flares Emily Ulanski December 9, 2008 Plasma Physics and Magnetohydrodynamics.
Working Group 2 - Ion acceleration and interactions.
RHESSI Observations of the 29-Oct-2003 Flare. 29-Oct-2003 General Info 29-OCT-03 GOES Start: 20:37, Peak: 20:49, End 21:01 Size X10 Position S19W09 (AR486)
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
Hard X-ray footpoint statistics: spectral indices, fluxes, and positions Pascal Saint-Hilaire 1, Marina Battaglia 2, Jana Kasparova 3, Astrid Veronig 4,
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB)
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Statistical Properties of Hot Thermal Plasmas in M/X Flares Using RHESSI Fe & Fe/Ni Line * and Continuum Observations Amir Caspi †1,2, Sam Krucker 2, Robert.
Modeling the Neupert Effect in Flares: Connecting Theory and Observation Andrea Egan Advisors: Dr. Trae Winter and Dr. Kathy Reeves.
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB) ABSTRACT: We present spectral fits for RHESSI and GOES solar.
It is possible that reconnection can occur multiple times along CS Plasmoids form as magnetic ‘islands’ between X-points Due to density and.
RHESSI OBSERVATIONS OF FLARE FOOTPOINTS AND RIBBONS H. Hudson and M. Fivian (SSL/UCB)
Center to Limb Variation of Hard X-Ray Spectra from RHESSI J.McTiernan (SSL/UCB) ABSTRACT: We use the RHESSI flare database to measure the center to limb.
Center to Limb Variation of Hard X-Ray Spectra from RHESSI J. McTiernan SSL/UCB.
GLOBAL ENERGETICS OF FLARES Gordon Emslie (for a large group of people)
Constraints on Particle Acceleration from Interplanetary Observations R. P. Lin together with L. Wang, S. Krucker at UC Berkeley, G Mason at U. Maryland,
Magnetic Reconnection Rate and RHESSI Hard X-Ray Imaging Spectroscopy of Well Resolved X-class Flares Yan Xu, Ju Jing, Wenda Cao, and Haimin Wang.
Magnetic Reconnection Rate and Energy Release Rate Jeongwoo Lee 2008 April 1 NJIT/CSTR Seminar Day.
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
Multiwavelength observations of a partially occulted solar flare Laura Bone, John C.Brown, Lyndsay Fletcher.
Loop-top altitude decrease in an X-class flare A.M. Veronig 1, M. Karlický 2,B. Vršnak 3, M. Temmer 1, J. Magdalenić 3, B.R. Dennis 4, W. Otruba 5, W.
Magnetic Reconnection in Flares Yokoyama, T. (NAOJ) Reconnection mini-workshop Kwasan obs. Main Title 1.Introduction : Reconnection Model of.
The Relation between Soft X-ray Ejections and Hard X-ray Emission on November 24 Flare H. Takasaki, T. Morimoto, A. Asai, J. Kiyohara, and K. Shibata Kwasan.
Lyndsay Fletcher, University of Glasgow Ramaty High Energy Solar Spectroscopic Imager Fast Particles in Solar Flares The view from RHESSI (and TRACE) MRT.
Fine Structure inside Flare Ribbons and its Temporal Evolution ASAI Ayumi 1, Masuda S. 2, Yokoyama T. 3, Shimojo M. 3, Kurokawa H. 1, Shibata, K. 1, Ishii.
Probing Energy Release of Solar Flares M. Prijatelj Carnegie Mellon University Advisors: B. Chen, P. Jibben (SAO)
RHESSI and Radio Imaging Observations of Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD G. Trottet, Observatoire.
Coronal hard X-ray sources and associated decimetric/metric radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA) S.R Kane G. Hurford.
Studies on the 2002 July 23 Flare with RHESSI Ayumi ASAI Solar Seminar, 2003 June 2.
NoRH Observations of RHESSI Microflares M.R. Kundu, Dept. of Astronomy, University of Maryland, College Park, MD E.J.Schmahl, Dept. of Astronomy, University.
Joint session WG4/5 Points for discussion: - Soft-hard-soft spectral behaviour – again - Non-thermal pre-impulsive coronal sources - Very dense coronal.
Determining the Heating Rate in Reconnection Formed Flare Loops Wenjuan Liu 1, Jiong Qiu 1, Dana W. Longcope 1, Amir Caspi 2, Courtney Peck 2, Jennifer.
RHESSI Hard X-Ray Observations of an EUV Jet on August 21, 2003 Lindsay Glesener, Säm Krucker RHESSI Workshop 9, Genova September 4, 2009.
I. Evidence of Rapid Flux Emergence Associated with the M8.7 Flare on 2002 July 26 Wang H. et al. 2004, ApJ, 605, using high temporal resolution.
Probing Electron Acceleration with X-ray Lightcurves Siming Liu University of Glasgow 9 th RHESSI Workshop, Genova, Italy, Sep
Direct Spatial Association of an X-Ray Flare with the Eruption of a Solar Quiescent Filament Gordon D. Holman and Adi Foord (2015) Solar Seminar on July.
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
Flare Irradiance Studies with the EUV Variability Experiment on SDO R. A. Hock, F. G. Eparvier, T. N. Woods, A. R. Jones, University of Colorado at Boulder.
Flare Ribbon Expansion and Energy Release Ayumi ASAI Kwasan and Hida Observatories, Kyoto University Explosive Phenomena in Magnetized Plasma – New Development.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
Microwave emission from the trapped and precipitated electrons in solar bursts J. E. R. Costa and A. C. Rosal1 2005, A&A, 436, 347.
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
Coronal hard X-ray sources and associated radio emissions N. Vilmer D. Koutroumpa (Observatoire de Paris- LESIA; Thessaloniki University) S.R Kane G. Hurford.
Dong Li Purple Mountain Observatory, CAS
Physics of Solar Flares
Two Years of NoRH and RHESSI Observations: What Have We Learned
A SOLAR FLARE is defined as a
Evolution of Ha Flare Kernels and Energy Release
Nonthermal Electrons in an Ejecta Associated with a Solar Flare
-Short Talk- The soft X-ray characteristics of solar flares, both with and without associated CMEs Kay H.R.M., Harra L.K., Matthews S.A., Culhane J.L.,
Presentation transcript:

X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu

Project Outline Overview of Solar Flares – Solar Flare Model – Observing Solar Flares RHESSI Observation – Analyzing Lightcurve Data – Monitoring Footpoints and Loop-top – Calculating Spectra EBTEL/CHIANTI Predictions – Comparing Theory and Observations

Solar Flare Basics Large release of magnetic energy at an active region causing radiation Emission ranges from radio to gamma rays Classified by soft x-ray flux: – B, C, M, X Two groups: – small, compact – large, two ribbon

Solar Flare Model Magnetic field emerges from solar surface and forms active region As field emerges, reconnection occurs and releases energy – Loop heating -> Thermal radiation – Particle acceleration -> Bremsstrahlung radiation Subsequent field lines go through reconnection giving illusion of moving footpoints and growing loops (Forbes)

Viewing Solar Flares Monitoring Loops and Footpoints – UV and EUV Thermal radiation -> loop and footpoint heating – X-Ray: Soft and Hard Soft X-ray: 3-20keV – Thermal radiation -> loop- top heating Hard X-ray: >10keV – Non-thermal radiation-> Bremsstrahlung radiation at footpoints

RHESSI X-Ray Observations Bridges footpoint and loop-top observations using HXR and SXR – Shows evolution of top and bottom of flare HXR – Highest energy band commonly observed in flare – Observes footpoints – First peak in lightcurve of flare event SXR – Lower energy than HXR – Observes loop-top radiation – Gradual rise of lightcurve to flare maximum

Flare to be Studied March 7 th, 2011 M1.7 flare in active region Use RHESSI Software to construct an understanding of flare – Lightcurve – Image Footpoint movement Loop-top evolution – Spectra

Using RHESSI Lightcurve Lightcurve – Time history of SXR and HXR Decide how to make images – Peaks – Attenuators Footpoints – First high-energy peak Loop-tops – Slowly rising lower energy peaks

Where are the footpoints?

… Apparently Not Here All high energy HXR (>25keV) particles indicated in lightcurve were a result of different flare Other flare region not recognized by other flare catalogs Complicates analysis a bit Nothing Here

Solution Correcting the Lightcurves – Make images from both flaring regions – Use RHESSI to compute flux in each region – Make computer program to determine ratio of the flux in each region to total flux – Multiply original lightcurve by ratio to get lightcurve for our region Image Loop-top Evolution – Footpoints not seen in this flare Calculate Theoretical Spectra – Can no longer use RHESSI software to calculate spectra – Use EBTEL/CHIANTI to calculate theoretical spectra and lightcurve Compare theoretical lightcurve to actual lightcurves to confirm spectra

Correcting Lightcurve for Extra Flare

All non-thermal radiation not in our flare!

Monitoring loop-top Evolution All energy associated with loop-tops not footpoints as shown by lightcurve correction. Flare is therefore a thermal flare.

Comparing New Lightcurve with Theory EBTEL – Use actual UV data to best fit to EBTEL model Find best-fit parameters for EBTEL – Considered thermal flare -> Fortunately – Find density and temperate parameters for loops CHIANTI – Atomic database – Uses EBTEL parameters to calculate differential emission measure (DEM) Amount of plasma emitting radiation at a given temperature range – Plot predicted lightcurve and spectra for RHESSI energy ranges

Actual vs. Theoretical

Conclusions Predicted lightcurves for RHESSI closely correlated to actual lightcurves after correcting for extra flare First time RHESSI lightcurves predicted with EBTEL DEM and CHIANTI EBTEL/CHIANTI used DEM which better predicted the changing temperature across loops than isothermal models used by RHESSI – Isothermal model assumes constant temperature and density across all loops -> not often true – Better model for spectra than RHESSI spectra due to extra flare and strong correlation of lightcurves