公開鍵暗号系 2011/05/09.

Slides:



Advertisements
Similar presentations
レポート書き方. おしいレポート よく調べてある それぞれの、1文の言っていることは正 しい しかし、全体として、何が言いた いのかわからない 内容の重要だが、全体の構成も重 要である.
Advertisements

1 7.時間限定チューリングマシンと クラス P. 2 7 -1.入力サイズ チューリングマシンの入力記号 の長さ を 入力サイズという。 名称:合成数の問題 インスタンス:整数n 問:nは合成数か? 通常は、入力サイズとしてはもっとも短い表現での 長さが利用される。 例えば、次のような合成数の問題における入力サイズは、
7.n次の行列式   一般的な(n次の)行列式の定義には、数学的な概念がいろいろ必要である。まずそれらを順に見ていく。
9.線形写像.
3.多項式計算アルゴリズム べき乗の計算 多項式の計算.
時間的に変化する信号. 普通の正弦波 は豊富な情報を含んでいません これだけではラジオのような複雑な情報 を送れない 振幅 a あるいは角速度 ω を時間的に変化 させて情報を送る.
九州大学 岡村研究室 久保 貴哉 1. 利用中のAPの数の推移 2 横軸:時刻 縦軸:接続要求数 ・深夜では一分間で平均一台、 昼間では平均14台程度の接続 要求をAPが受けている。 ・急にAPの利用者数が増えてく るのは7~8時あたり.
麻雀ゲーム 和島研究室 ソ 小林巧人
5.連立一次方程式.
相関.
1 情報量(2章). 2 物理的概念との対比1(入れ物と中 身) 塩水 塩 データ 情報 情報の量? 塩分の量! 情報の量は見た目ではわ からない。データと情報 は異なる概念。 塩分の量は見た目 ではわからない。 しかし、本質的な もの。
つくばだいがくについて 芸術専門学群のこと. 筑波大学ってこんなところ 東京教育大学を前身とする大学で、その 創立は日本で最も古い大学のひとつ。 大学の敷地面積は日本で二番目に広い大 学で、やたら坂が多い。移動時間が15分 しかないのに上り坂を三つ超えることがよ くある。
―本日の講義― ・平均と分散 -代表値 -ぱらつき(分散・標準偏差等) ・Excelによる演習
論理回路 第2回 今日の内容 前回の課題の説明 数の体系 – 数の表現 – 代表的な数 – 基数の変換 – 補数.
広告付き価格サービ ス 小園一正. はじめに 世の中には様々な表現方法の広告があり ます。その中でも私たち学生にとって身 近にあるものを広告媒体として取り入れ られている。 価格サービス(無料配布のルーズリー フ)を体験したことにより興味を惹かれ るきっかけとなった。主な目的は、これ.
素数判定法 2011/6/20.
フーリエ係数の性質. どこまで足す? 理想的には無限大であるが、実際に はそれは出来ない これをフーリエ解析してみる.
地球温暖化と 天候の関係性 ~温暖化は天候のせいなのではないのか~. 目的課題 地球温暖化現象 ただの気象条件によるものではないのか? 地球温暖化現象に天候は関係しているの か?
1章 行列と行列式.
本宮市立白岩小学校. 1 はじめに 2 家庭学習プログラム開発の視点 ① 先行学習(予習)を生かした 確かな学力を形成する授業づく り ② 家庭との連携を図った家庭学習の習慣化.
フーリエ級数. 一般的な波はこのように表せる a,b をフーリエ級数とい う 比率:
3.エントロピーの性質と各種情報量.
9.通信路符号化手法1 (誤り検出と誤り訂正の原理)
Excelによる積分.
1 6.低次の行列式とその応用. 2 行列式とは 行列式とは、正方行列の特徴を表す一つのスカ ラーである。すなわち、行列式は正方行列からスカ ラーに写す写像の一種とみなすこともできる。 正方行列 スカラー(実数) の行列に対する行列式を、 次の行列式という。 行列 の行列式を とも表す。 行列式と行列の記号.
計算のスピードアップ コンピュータでも、sin、cosの計算は大変です 足し算、引き算、掛け算、割り算は早いです
線形符号(10章).
1 0章 数学基礎. 2 ( 定義)集合 集合については、 3セメスタ開講の「離散数学」で詳しく扱う。 集合 大学では、高校より厳密に議論を行う。そのために、議論の 対象を明確にする必要がある。 ある “ もの ” (基本的な対象、概念)の集まりを、 集合という。 集合に含まれる “ もの ” を、集合の要素または元という。
10.PとNP完全問題との境界.
複素数.
4.プッシュダウンオートマトンと 文脈自由文法の等価性
1 0章 数学基礎. 2 ( 定義)集合 集合については、 3セメスタ開講の「離散数学」で詳しく扱う。 集合 大学では、高校より厳密に議論を行う。そのために、議論の 対象を明確にする必要がある。 ある “ もの ” (基本的な対象、概念)の集まりを、 集合という。 集合に含まれる “ もの ” を、集合の要素または元という。
信号測定. 正弦波 多くの場合正弦波は 0V の上下で振動する しかし、これでは AD 変換器に入れら れないので、オフ セットを調整して データを取った.
1 9.線形写像. 2 ここでは、行列の積によって、写像を 定義できることをみていく。 また、行列の積によって定義される写 像の性質を調べていく。
通信路(7章).
アルゴリズムとデータ構造 補足資料 7-4 「単純交換ソート exsort.c 」 横浜国立大学 理工学部 数物・電子情報系学科 富井尚志.
1 情報理論 2008 年度 4 セメスター. 2 履修にあたって 担当 – 草苅 良至(部屋GI511、内線209 5 ) 教科書 平田廣則著「情報理論のエッセンス」 昭晃堂、 \2,700- ・参考書 今井秀樹著「情報理論」 昭晃堂、 \2,900-
3.プッシュダウンオートマトンと 文脈自由文法
6.符号化法(6章).
ビット. 十進数と二進数 十進数  0から9までの数字を使って 0、1、2、3、4、5、6、7、8、9、 10、11、12 と数える 二進数  0と1を使って 0、1、10、11、100、101、11 0、111 と数える.
アルゴリズムとデータ構造 補足資料14-1 「ハッシュ法」
3.正方行列(単位行列、逆行列、対称行列、交代行列)
プログラミング演習B ML編 第3回 2010/6/15 (コミ) 2010/6/16 (情報・知能) 住井 ~sumii/class/proenb2010/ml3/
論理回路 第1回. 今日の内容 論理回路とは? 本講義の位置づけ,達成目標 講義スケジュールと内容 受講時の注意事項 成績の評価方法.
伝わるスライド 中野研究室 M2 石川 雅 信. どのようなスライドを作れば良 いか 伝えたいこと.
Three-Year Course Orientation International Course.
方程式を「算木」で 解いてみよう! 愛媛大学 教育学部 平田 浩一.
C言語応用 構造体.
3.多項式計算アルゴリズム べき乗の計算 多項式の計算.
階層分析法. 表3. 1 ルートR1R1 R2R2 R3R3 R4R4 R5R5 F1F1 最寄駅までの所要 時間(分) 10 7 F2F2 実乗車時間(分) F3F3 片道切符(円) ヶ月定期(円) 11,21011,9309,75012,46012,720.
Automatic Language Acquisition, an Interactive Approach † Robert J. Martin † 大西昇 ‡ 山村毅 † 名古屋大学 ‡ 愛知県立大学.
プログラミング演習B ML編 第3回 2006/7/4 (通信コース) 2006/7/12 (情報コース) 住井 ~sumii/class/proenb2006/ml3/
1 プログラミング言語論 第13回 プログラムの意味論と検証 (2) 表示的意味論 担当:犬塚. 2 表示的意味論 denotational semantics  表示的意味論では、プログラムの要素とそれが 意味するものを対応付ける。 変数 式 文 A B … A+2 2B+C A:=A+2 if.
8.任意のデータ構造 (グラフの表現とアルゴリズム)
プログラミング入門2 第3回 複合文、繰り返し 情報工学科 篠埜 功.
第14回 プログラムの意味論と検証(3) 不動点意味論 担当:犬塚
実験5 規則波 C0XXXX 石黒 ○○ C0XXXX 杉浦 ○○ C0XXXX 大杉 ○○ C0XXXX 高柳 ○○ C0XXXX 岡田 ○○ C0XXXX 藤江 ○○ C0XXXX 尾形 ○○ C0XXXX 足立 ○○
外部性 公共経済学(財政学A) 第4回 畑農鋭矢.
オセロの思考アルゴリズムについて 1103072 岩間 隆浩.
1 アルゴリズムの高速化. 2 アルゴリズムにおける 大幅な性能アップ 多項式時間アルゴリズム VS 対数時間アルゴリズム (最大公約数の問題) 指数時間アルゴリズム VS 多項式時間アルゴリズム (フィボナッチ数列を求める問題)
携帯電話でのコミュニ ケーションについて 1班真田 出水 佐伯 堺. 仮説  女性のほうが携帯電話を使ったコミュニ ケーションを重要視する。
Kitenet の解析 (110118) 九州大学 工学部 電気情報工学科 岡村研究室 久保 貴哉.
音の変化を視覚化する サウンドプレイヤーの作成
プログラミングの基礎知識 プログラミングの手順と重要概念 アルゴリズム. プログラミングの手順 コーディング エディタなどでコードを記述 コンパイル・インタープリタ 実行可能な形に翻訳 デバッグ(虫取り、不具合の調整) 完成!
HCC Hair Color Change. メンバー ソ 渋谷麻美 ソ 渋谷麻美 ソ 清野理衣子 ソ 清野理衣子 ソ 三上貴大 ソ 三上貴大.
本文. 考えながら読みましょ う 「いろいろなこと」( 3 行目)は何で すか 「①電話料金はコンビニで支払いをしていま す。いつでも払えますから、便利です。」 「②夕食はコンビニで買います。お弁当やお かずがいろいろありますから。」今、若者に 人気のあるコンビニは、いろいろなことをす るのに非常に便利な場所になった。
IIR 輪講復習 #18 Matrix decompositions and latent semantic indexing.
今日の内容 高階関数  関数を値として扱う 関数を引数にとる 関数を返す関数 プログラミングの例題  クイックソート.
英語勉強会 名手⇒詫間 2015/10/22. 原文 This study says acquiring motor skills support system. There is how to acquire moor skills that coach advises learner. Motor.
腎臓移植 腎臓移植の前に、ドナー両方の腎臓は機 能的に良好でなければならない。ドナー の両方の腎臓が機能的に健康であること を保証するために、多数の試験が行われ ている。
Presentation transcript:

公開鍵暗号系 2011/05/09

公開鍵暗号 Diffie Hellman 鍵共有理論 1976 1978年R. L. Rivest, A. Shamir, L. M. Adleman 実際には英国が最初に開発   GCHQ James Ellis 1969 Cliford Coks 1973 特徴  暗号化に必要な公開鍵  複合化に必要な秘密鍵 公開鍵と暗号化プロセス、複合化プロセスが分かっていても、秘密鍵を見つけるのは困難

RSA暗号の原理 素因数分解を応用 概念  素数p、qの積nは簡単に計算できるが、nからp、qを計算するのは困難

素因数分解の例 p = 9010279,q = 9623083 n = p ×q = 86706662670157

剰余 nをmで割った余りを m mod nと書く a1 mod n = b1 , a2 mod n =b2 とすると a1 a2 ≡ b1b2 mod n a1 +a2 ≡ b1+b2 mod n

Eulerの関数 ある整数nに対し、1からn-1の整数でnと互いに素な整数の個数 特にnが素数pの場合、Φ(p)=p-1 例) 8と互いに素な整数 1,3,5,7  よってΦ(8)=4 5と互いに素な整数 1,2,3,4 よってΦ(5)=4

Eulerの定理・Fermatの小定理 rとnが互いに素な場合 rΦ(n)≡1 mod n 特にnが素数pの場合 (Fermatの小定理) r p-1 ≡1 mod p

Eulerの定理 p、qを素数とすると Φ(pq)= Φ(p)Φ(q)= (p-1)(q-1) 例) p=61,q=53 pq=61x53=3233 Φ(3233)=Φ(61-1)Φ(53-1)=3120

一次合同式 1次合同式 ax ≡ b mod m が解xを持つ必要十分条件  → a と m の最大公約数 gcd(a, m) が, b を割り切れる 1次合同式  ax ≡ 1 mod m が解xを持つ必要十分条件  → a と m が互いに素である

逆元の存在 gcd(a, m) = 1 となるとき,1次合同式 ax ≡ 1 mod m の解xが m を法にして唯1つ存在する  その x を m を法とする a の逆元という gcd(c, m) = 1 とすると,ca ≡ cb mod m ならば,  a ≡ b mod mとなる

RSA暗号の根拠 n,dが公開鍵、eが秘密鍵となる nを相異なる素数p,q の積 e を gcd(e,φ(n))=1 となる正整数 このとき nを相異なる素数p,q の積 e を gcd(e,φ(n))=1 となる正整数 このとき       ed≡ 1 mod Φ(n)なる dが存在し       ed≡ 1 mod Φ(p)Φ(q) ≡ 1 mod (p-1)(q-1) かつ       xed≡x  mod  n n,dが公開鍵、eが秘密鍵となる

x(q-1)(p-1)≡ 1 mod pq ≡1 mod n 数学的根拠 x(p-1)を考える x(p-1)(q-1)≡1 mod q x(q-1)を考える x(q-1)(p-1)≡ 1 mod p x(q-1)(p-1)≡ 1 mod pq ≡1 mod n

数学的根拠 ed ≡ 1 mod Φ(n) ≡ 1 mod Φ(p)Φ(q) であるから ed=1 +f(p-1)(q-1) xed=xxf(p-1)(q-1) xed ≡ x mod n

暗号化 AがBに暗号文を送る場合 aを暗号化するべき数 AはBの公開鍵d、nを使い b=ad mod n を計算する(暗号化)   を計算する(暗号化) ・bを相手に伝える

複合化 BはAから受け取った暗号文を複合する場合 Bは自分の秘密eを用い be を計算する(複合化) be=(ad)e=ade=a mod n≡a

RSA暗号の基礎 b,nを知っているだけでは複合化に必要なdを知るのは困難 nを素因数分解する必要がある 実際には、複数の素数の積が使われる

素因数分解の困難さ 2009年 232桁 768bit RSA 300桁 1024bit

参考文献・URL 暗号解読 サイモン・シン 新潮出版 ISBN4-10-539302 暗号解読 サイモン・シン 新潮出版 ISBN4-10-539302 ・http://www.math.kobe-u.ac.jp/~taka/asir-book-html/main/node94.html