Chapter 2 Relational Model (part II) Hankz Hankui Zhuo

Slides:



Advertisements
Similar presentations
Ver 1,12/09/2012Kode :CCs 111,sistem basisdataFASILKOM Chapter 2: Relational Model Database System Concepts, 5th Ed. ©Silberschatz, Korth and Sudarshan.
Advertisements

ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala CSE-503 D ATABASE M ANAGEMENT S YSTEM Aug-Dec,2010 Relational Model 1 1.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Extended.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Tuple Relational.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Extended Relational-Algebra-Operations Generalized Projection Outer Join Aggregate Functions.
Relational Algebra Lecture 2. Relational Model Basic Notions Fundamental Relational Algebra Operations Additional Relational Algebra Operations Extended.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Tuple Relational.
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Relational.
Relational Algebra and SQL Prof. Sin-Min Lee Department of Computer Science San Jose State University.
Relational Algebra Lecture 2. Relational Model Basic Notions Fundamental Relational Algebra Operations Additional Relational Algebra Operations Extended.
Slides adapted from A. Silberschatz et al. Database System Concepts, 5th Ed. SQL - part 2 - Database Management Systems I Alex Coman, Winter 2006.
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Relational.
Midterm 2 Revision Prof. Sin-Min Lee Department of Computer Science San Jose State University.
Instructor: Mohamed Eltabakh
Slides adapted from A. Silberschatz et al. Database System Concepts, 5th Ed. Relational Model Database Management Systems I Alex Coman, Winter 2006.
Relational Model. 2 Structure of Relational Databases Fundamental Relational-Algebra-Operations Additional Relational-Algebra-Operations Extended Relational-Algebra-Operations.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Tuple Relational.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Tuple Relational.
PMIT-6102 Advanced Database Systems By- Jesmin Akhter Assistant Professor, IIT, Jahangirnagar University.
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com 1 Chapter 2: Relational.
©Silberschatz, Korth and Sudarshan2.1Database System Concepts Chapter 2: Relational Model Structure of Relational Databases Relational Algebra.
©Silberschatz, Korth and Sudarshan2.1Database System Concepts - 5 th Edition, Oct 5, 2006 Outer Join n An extension of the join operation that avoids loss.
Chapter 6: Formal Relational Query Languages. 6.2 Chapter 6: Formal Relational Query Languages Relational Algebra Tuple Relational Calculus Domain Relational.
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Relational.
CIS552Relational Model1 Structure of Relational Database Relational Algebra Extended Relational-Algebra-Operations Modification of the Database.
Computing & Information Sciences Kansas State University Monday, 04 Feb 2008CIS 560: Database System Concepts Lecture 6 of 42 Monday, 04 February 2008.
3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Tuple Relational Calculus Domain Relational.
Midterm 2 Revision Prof. Sin-Min Lee Department of Mathematics and Computer Science San Jose State University.
1 Session 3 Welcome: To session 3-the fifth learning sequence “ Relational algebra “ Recap : In the previous learning sequences, we discussed the eight.
Computing & Information Sciences Kansas State University Monday, 08 Sep 2008CIS 560: Database System Concepts Lecture 5 of 42 Monday, 08 September 2008.
Relational Model By Dr.S.Sridhar, Ph.D.(JNUD), RACI(Paris, NICE), RMR(USA), RZFM(Germany) DIRECTOR ARUNAI ENGINEERING COLLEGE TIRUVANNAMALAI.
Yufis Azhar – Teknik Informatika – UMM.  Aggregation function takes a collection of values (of a single attribute) and returns a single value as a result.
Advanced Database Systems By- Jesmin Akhter Assistant Professor, IIT, Jahangirnagar University.
ICOM 5016 – Introduction to Database Systems Lecture 8 Dr. Manuel Rodriguez Department of Electrical and Computer Engineering University of Puerto Rico,
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Extended.
Chapter 2: Relational Model. 2.2 Chapter 2: Relational Model Structure of Relational Databases Fundamental Relational-Algebra-Operations Additional Relational-Algebra-Operations.
©Silberschatz, Korth and Sudarshan2.1Database System Concepts - 5 th Edition, Oct 5, 2006 Example.
©Silberschatz, Korth and Sudarshan2.1Database System Concepts Chapter 2: Relational Model Structure of Relational Databases Relational Algebra.
Chapter 2: Relational Model. 2.2Unite International CollegeDatabase Management Systems Chapter 2: Relational Model Structure of Relational Databases Fundamental.
2.1 Chapter 2: Relational Model. 2.2 Chapter 2: Relational Model Structure of Relational Databases Fundamental Relational-Algebra-Operations Additional.
Source: Database System Concepts, Silberschatz etc Edited: Wei-Pang Yang, IM.NDHU, Introduction to Database CHAPTER 2 RELATIONAL MODEL 2.1.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Chapter 3: Relational Model Structure of Relational Databases Relational Algebra Extended.
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Relational.
©Silberschatz, Korth and Sudarshan3.1Database System Concepts Extended Relational-Algebra-Operations Generalized Projection Aggregate Functions Outer Join.
Computing & Information Sciences Kansas State University Friday, 08 Sep 2006CIS 560: Database System Concepts Lecture 07 of 42 Tuesday, 30 January 2007.
Midterm 2 Revision Prof. Sin-Min Lee Department of Computer Science San Jose State University.
Database System Concepts, 5 th Ed. Bin Mu at Tongji University Chapter 2: Relational Model.
Computing & Information Sciences Kansas State University Wednesday, 03 Sep 2008CIS 560: Database System Concepts Lecture 3 of 42 Wednesday, 03 September.
©Silberschatz, Korth and Sudarshan1Database System Concepts The Relational Model Structure of Relational Databases Relational Algebra.
Relational Algebra HW2 Turn in as a hardcopy at the start of next class period. You may work this assignment in groups.
ICOM 5016 – Introduction to Database Systems Lecture 6 Dr. Manuel Rodriguez Department of Electrical and Computer Engineering University of Puerto Rico,
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Relational.
ASET Relational Algebra continues…. ASET Rename Operation Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 2: Relational.
IS 230Lecture 7Slide 1 Relational Algebra Lecture 8 Text Book – Chapter.
Chapter 3: Relational Model III Additional Relational Algebra Operations Additional Relational Algebra Operations Views Views.
International Computer Institute, Izmir, Turkey Relational Model Asst.Prof.Dr.İlker Kocabaş UBİ502 at
Query Languages Language in which user requests information from the database. Categories of languages Procedural Non-procedural, or declarative “Pure”
Database System Concepts, 5 th Ed. ©Silberschatz, Korth and Sudarshan Chapter 2: Relational Model.
Database System Concepts, 6 th Ed. ©Silberschatz, Korth and Sudarshan See for conditions on re-usewww.db-book.com Chapter 6: Formal Relational.
International Computer Institute, Izmir, Turkey Relational Model Asst.Prof.Dr.İlker Kocabaş UBİ502 at
Aljabar Relasi.
Midlands State University Topic: Relational DB Model
Chapter 3: Relational Model III
Chapter 2: Relational Model
Lecture 4 of 42 Relational Joins Wednesday, 30 January 2008
Instructor: Mohamed Eltabakh
Relational Algebra.
Chapter 2: Relational Model
CS 405G: Introduction to Database Systems
Presentation transcript:

Chapter 2 Relational Model (part II) Hankz Hankui Zhuo

Additional Operations

For What? Do not add any power to the relational algebra But simplify common queries

What’s Additional Operations? Set Intersection Natural Join Division Assignment

Set Intersection Relation r, s: r  s = ? A B   2323 rs  2

Set Intersection Notation: r  s Defined as: r  s = { t | t  r and t  s } Assume: – r, s have the same arity – attributes of r and s are compatible How to address r  s using difference operation “-”?

Set Intersection Notation: r  s Defined as: r  s = { t | t  r and t  s } Assume: – r, s have the same arity – attributes of r and s are compatible How to address r  s using difference operation “-”: r  s = r – (r – s)

Natural Join Relations r, s: AB  CD  aababaabab B D aaabbaaabb E  r AB  CD  aaaabaaaab E  s r s

Natural Join Relations r, s: AB  CD  aababaabab B D aaabbaaabb E  r AB  CD  aaaabaaaab E  s r s

Natural Join Notation: r s Let r and s be relations on schemas R and S respectively. Then, r s is a relation on schema R  S obtained as follows: – Consider each pair of tuples t r from r and t s from s. – If t r and t s have the same value on each of the attributes in R  S, add a tuple t to the result, where t has the same value as t r on r t has the same value as t s on s

Natural Join How to present r s using basic operations? Example: R = (A, B, C, D) S = (E, B, D)

Natural Join How to present r s using basic operations? Example: R = (A, B, C, D) S = (E, B, D) – Result schema = (A, B, C, D, E) – r s is defined as:  r.A, r.B, r.C, r.D, s.E (  r.B = s.B  r.D = s.D (r x s))

Division Operation nRelations r, s: nr  s:nr  s: A B  1212 AB  r s

Division Operation nRelations r, s: nr  s:nr  s: A B  1212 AB  r s

Division Operation Notation: r  s Let r and s be relations on schemas R and S respectively where – R = (A 1, …, A m, B 1, …, B n ) – S = (B 1, …, B n ) The result of r  s is a relation on schema R – S = (A 1, …, A m ); r  s = { t | t   R-S (r)   u  s ( tu  r ) } Where tu means the concatenation of tuples t and u to produce a single tuple

Division Operation – one more example AB  aaaaaaaaaaaaaaaa CD  aabababbaabababb E Relations r, s: r  s: D abab E 1111 AB  aaaa C  r s

Division Operation – one more example AB  aaaaaaaaaaaaaaaa CD  aabababbaabababb E Relations r, s: r  s: D abab E 1111 AB  aaaa C  r s

Division Operation Property – Let q = r  s – Then q is the largest relation satisfying q x s  r How to describe r  s in terms of the basic algebra operation?

Division Operation Let r(R) and s(S) be relations, and let S  R r  s =  R-S (r ) –  R-S ( (  R-S (r ) x s ) –  R-S,S (r )) Why?

Division Operation Let r(R) and s(S) be relations, and let S  R r  s =  R-S (r ) –  R-S ( (  R-S (r ) x s ) –  R-S,S (r )) Why? –  R-S,S (r) simply reorders attributes of r –  R-S (  R-S (r ) x s ) –  R-S,S (r) ) gives those tuples t in  R-S (r ) such that for some tuple u  s, tu  r.

Assignment Operation The assignment operation (  ) provides a convenient way to express complex queries. – Write query as a sequential program consisting of a series of assignments followed by an expression whose value is displayed as a result of the query. – Assignment must always be made to a temporary relation variable.

Assignment Operation Example: Write r  s as temp1   R-S (r ) temp2   R-S ((temp1 x s ) –  R-S,S (r )) result = temp1 – temp2 – The result to the right of the  is assigned to the relation variable on the left of the . – May use variable in subsequent expressions.

Bank Example Queries Find the names of all customers who have a loan and an account at bank. branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)

Bank Example Queries Find the names of all customers who have a loan and an account at bank.  customer_name (borrower)   customer_name (depositor) branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)

Bank Example Queries Find all customer names who have a loan at the bank, meanwhile find the loan_number and amount branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)

Bank Example Queries Find all customer names who have a loan at the bank, meanwhile find the loan_number and amount branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)  customer_name, loan_number, amount (borrower loan)

Bank Example Queries Find all customers names who have an account from at least the “Downtown” and the Uptown” branches. branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)

Bank Example Queries Find all customers names who have an account from at least the “Downtown” and the “Uptown” branches. branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)  customer_name (  branch_name = “Downtown” (depositor account ))   customer_name (  branch_name = “Uptown” (depositor account))

Bank Example Queries Find all customers names who have an account from at least the “Downtown” and the Uptown” branches. branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)  customer_name, branch_name (depositor account)   temp(branch_name) ({(“Downtown” ), (“Uptown” )})

Bank Example Queries Find all customers who have an account at all branches located in Brooklyn city. branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)

Bank Example Queries Find all customers who have an account at all branches located in Brooklyn city. branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)  customer_name, branch_name (depositor account)   branch_name (  branch_city = “Brooklyn” (branch))

Extended Relational Algebra Operations

Generalized Projection Aggregate Functions Outer Join

Generalized Projection Given relation credit_info(customer_name, limit, credit_balance), find how much more each person can spend:  customer_name, limit – credit_balance (credit_info)

Generalized Projection Extends the projection operation by allowing arithmetic functions to be used in the projection list. E is any relational-algebra expression Each of F 1, F 2, …, F n are arithmetic expressions involving constants and attributes in the schema of E.

Aggregate Functions and Operations Relation r: AB   C g sum(c) (r) sum(c ) 27

Aggregate Functions and Operations Aggregation function takes a collection of values and returns a single value as a result. avg: average value min: minimum value max: maximum value sum: sum of values count: number of values Aggregate operation in relational algebra E is any relational-algebra expression – G 1, G 2 …, G n is a list of attributes on which to group (can be empty) – Each F i is an aggregate function – Each A i is an attribute name

Aggregate Functions and Operations Relation account grouped by branch-name: branch_name g sum( balance ) ( account ) branch_nameaccount_numberbalance Perryridge Brighton Redwood A-102 A-201 A-217 A-215 A branch_namesum(balance) Perryridge Brighton Redwood

Aggregate Functions and Operations Result of aggregation does not have a name – Can use rename operation to give it a name – For convenience, we permit renaming as part of aggregate operation branch_name g sum(balance) as sum_balance ( account )

Outer Join loan borrower customer_nameloan_number Jones Smith Hayes L-170 L-230 L loan_numberamount L-170 L-230 L-260 branch_name Downtown Redwood Perryridge Left outer joint: loan borrower Jones Smith null loan_numberamount L-170 L-230 L customer_namebranch_name Downtown Redwood Perryridge

Outer Join loan_numberamount L-170 L-230 L null customer_name Jones Smith Hayes branch_name Downtown Redwood null loan_numberamount L-170 L-230 L-260 L null customer_name Jones Smith null Hayes branch_name Downtown Redwood Perryridge null n Full Outer Join: loan borrower n Right Outer Join: loan borrower

Modification of the Database The content of the database may be modified using the following operations: – Deletion – Insertion – Updating All these operations are expressed using the assignment operator.

Deletion Delete all account records in the Perryridge branch. Delete all accounts at branches located in Needham city. r 1    branch_city = “Needham” (account branch ) r 2   account_number, branch_name, balance (r 1 ) r 3   customer_name, account_number (r 2 depositor) account  account – r 2 depositor  depositor – r 3 Delete all loan records with amount in the range of 0 to 50 loan  loan –   amount  0  and amount  50 (loan) account  account –  branch_name = “Perryridge” (account )

Deletion A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database. Can delete only whole tuples; cannot delete values on only particular attributes A deletion is expressed in relational algebra by: r  r – E where r is a relation and E is a relational algebra query.

Insertion Insert information in the database specifying that Smith has $1200 in account A-973 at the Perryridge branch. Provide as a gift for all loan customers in the Perryridge branch, a $200 savings account. Let the loan number serve as the account number for the new savings account. account  account  {(“A-973”, “Perryridge”, 1200)} depositor  depositor  {(“Smith”, “A-973”)} r 1  (  branch_name = “Perryridge” (borrower loan)) account  account   loan_number, branch_name, 200 (r 1 ) depositor  depositor   customer_name, loan_number (r 1 )

Insertion To insert data into a relation, we either: – specify a tuple to be inserted – write a query whose result is a set of tuples to be inserted in relational algebra, an insertion is expressed by: r  r  E where r is a relation and E is a relational algebra expression. The insertion of a single tuple is expressed by letting E be a constant relation containing one tuple.

Updating Make interest payments by increasing all balances by 5 percent. Pay all accounts with balances over $10,000 6 percent interest and pay all others 5 percent account   account_number, branch_name, balance * 1.06 (  BAL  (account ))   account_number, branch_name, balance * 1.05 (  BAL  (account)) account   account_number, branch_name, balance * 1.05 (account)

Updating A mechanism to change a value in a tuple without charging all values in the tuple Use the generalized projection operator to do this task Each F i is either – the I th attribute of r, if the I th attribute is not updated, or, – if the attribute is to be updated F i is an expression, involving only constants and the attributes of r, which gives the new value for the attribute

The End!