Virtual Reality Simulators for Minimal Invasive Surgery Training C U I SMART Lab Virtual Reality Simulators for Minimal Invasive Surgery Training Shamyl Bin Mansoor, SMART Lab, SEECS, NUST, Islamabad School of Electrical Engineering & Computer Science, National University of Sciences & Technology, Pakistan
About the Team School of Electrical Engineering & Computer Science Dr Osman Hasan, Project Director Dr Muddassir Malik Co-PI, Dr Arshad Ali, DG, SEECS, NUST Shamyl Bin Mansoor, Co-PI Researchers Zaheer Mukhtar (Software Engineer) Taimur Hassan (Mechanical Engineer) Farrukh Hijaz (Electrical Engineer) Holy Family Hospital, Rawalpindi Dr Asif Zafar, Professor of Surgery, Head Surgical Unit -2, Dr Qasim Ali, Senior Registrar (Surgeon) Dr Faisal Murad, Senior Registrar (Surgeon) C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Outline Motivation Our Project Challenges Developing the System Our Approach About the Lab C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Motivation Minimal Invasive Surgery is currently in vogue Operations once performed “open” are now done almost exclusively using laparoscopes The latest trend is to perform robots assisted surgery All these new skills require special training Hand Eye Coordination Navigation of Camera and Laparoscopic instruments in a confined space C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
* Images courtesy of Dr Asif Zafar (Holy Family Hospital, Rawalpindi) Background Conventional Open Surgery Vs Minimal Invasive Surgery MIS Conventional Surgery C U I SMART Lab * Images courtesy of Dr Asif Zafar (Holy Family Hospital, Rawalpindi)
Background Robots Assisted Minimal Invasive Surgery Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
State of the Art ProMIS by Haptica, Ireland LapSIM By Surgical Science, Sweden C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Our Project Objectives Major Components Value Addition Developing a cost effective training system for Minimal Invasive Surgery Major Components Virtual Reality Simulator for Minimal Invasive Surgery Training Robot for Robot assisted Minimal Invasive Surgery Value Addition Simulating Real Surgery Scenes recorded at Holy Family Hospital Using open source tools making it cost effective Haptic Intercface with the Simulator Developing basic and advanced exercises (Fundamentals of Laparoscopic Surgery (FLS) curriculum) C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
The Concept C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Challenges The first challenge is to model the human anatomy Making 3D models that exactly look like the original ones The second challenge is to simulate this 3D model to act like the real thing For example a 3D model of heart can only be called a heart model if it acts like a human heart too, beating and pumping blood Simulating Tissue behavior The third challenge is to simulate the environment within the human body What happens if an external object pokes a tissue? In real-life the tissue or that part of the body would start to bleed internally How can that be simulated C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
System Components Dataset Mechanical Object Tissue Modeling and Characterization Illumination Mechanism Collision Detection Teaching Resources Assessment through metrics and feedback Performance Monitoring C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Teaching Resources and Assessment Implementing Laparoscopic Training Manual and specific scenarios Cues, Feedback and comparisons Assessment through metrics and qualitative feedback Errors Movement Time Forces C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Four Modules Simulation Engine Basic Training Module Based on Simulation Open Framework Architecture Modeling and Simulation Basic Training Module Fundamentals of Laparoscopic Surgery Curriculum for Surgeon Training Advanced Training Module Simulation of complex laparoscopic procedures Videos provided by Holy Family Hospital of different scenarios of laparoscopic surgery Evaluation Module Evaluation of surgeons on the basis of simulator training C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Our Approach We are utilizing open source framework for developing our system Using SOFA (Simulation Open Framework Architecture) as the core of our system Creating simulations of real scenarios from Holy Family’s database of over 100 videos Formal Verification of the system C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Formal Verification A Safety Critical Application A minor glitch in the analysis phase could result in disastrous consequences Potential Analysis Aspects Evaluating Behavioral Correctness of Telesurgical Robotic Systems Formal Reliability Analysis of Telesurgical Robotic Systems Formal Verification and Performance Analysis of Telesurgical Network Protocols C U I SMART Lab
Current Progress Developed basic exercises of FLS Curriculum Integrated a conventional joystick for camera navigation C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Demo Video C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Demo Video 2 C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Research Areas at SMART lab We are also interested in a number of other areas which include Android based Disaster Management Systems Telemedicine Systems using mobile telephony Intelligent Robotics Brain Machine Interface Visualization Techniques More Information Available at http://smart.seecs.nust.edu.pk C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST
Contact Us! smartlab@seecs.edu.pk shamyl.mansoor@seecs.edu.pk Thank You Contact Us! smartlab@seecs.edu.pk shamyl.mansoor@seecs.edu.pk C U I SMART Lab Smart Machines And Robotics Technology Lab, School of Electrical Engineering & Computer Science, NUST