Jet dynamics, stability and energy transport Manel Perucho-Pla Universitat de València High Energy Phenomena in Relativistic Outflows III Barcelona - June.

Slides:



Advertisements
Similar presentations
INAF - Osservatorio Astronomico di Torino
Advertisements

Global Simulations of Astrophysical Jets in Poynting Flux Dominated Regime Hui Li S. Colgate, J. Finn, G. Lapenta, S. Li Engine; Injection; Collimation;
arvard.edu/phot o/2007/m51/. Confronting Stellar Feedback Simulations with Observations of Hot Gas in Elliptical Galaxies Q. Daniel Wang,
Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
The CD Kink Instability in Magnetically Dominated Relativistic Jets * The relativistic jets associated with blazar emission from radio through TeV gamma-rays.
Stability Properties of Magnetized Spine-Sheath Relativistic Jets Philip Hardee 1 (UA), Yosuke Mizuno 2 (NSSTC/MSFC) & Ken-Ichi Nishikawa 3 (NSSTC/UAH)
Plasma Astrophysics Chapter 7-1: Instabilities I Yosuke Mizuno Institute of Astronomy National Tsing-Hua University.
Jets from Active Galactic Nuclei: Observations and Models
Radio Galaxies in X-Ray Light: Problems and Processes Dave De Young NOAO Radio Galaxies in the Chandra Era 8-11 July 2008.
Gamma-Ray Burst Jets: dynamics and interaction with the progenitor star Davide Lazzati, Brian Morsony, and Mitch Begelman JILA - University of Colorado.
Centaurus A Kraft, Hardcastle, Croston, Worrall, Birkinshaw, Nulsen, Forman, Murray, Goodger, Sivakoff,Evans, Sarazin, Harris, Gilfanov, Jones X-ray composite.
Astrophysical Jets Robert Laing (ESO). Galactic black-hole binary system Gamma-ray burst Young stellar object Jets are everywhere.
Magnetic Jets and Lobes in Cosmological MHD Hui Li Los Alamos National Laboratory NSF/DOE Center for Magnetic Self-Organization (CMSO) Collaborators: H.
Numerical Simulations of FRI jets Manel Perucho Pla Max-Planck-Institut für Radioastronomie and J.M. Martí (Universitat de València)
Jonathan Slavin Harvard-Smithsonian CfA
Cosmological MHD Hui Li Collaborators: S. Li, M. Nakamura, S. Diehl, B. Oshea, P. Kronberg, S. Colgate (LANL) H. Xu, M. Norman (UCSD), R. Cen (Princeton)
Role of Magnetic Field for Instabilities in Relativistic Jets Yosuke Mizuno Institute for Theoretical Physics Goethe University Frankfurt am Main Krakow.
PRESIDENCY UNIVERSITY
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Numerical simulations are used to explore the interaction between solar coronal mass ejections (CMEs) and the structured, ambient global solar wind flow.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
Radio Jet Disruption in Cooling Cores OR, can radio jets solve the cooling core problem? OR, how do cooling cores disrupt radio jets?
1 Does AGN “Feedback” in Galaxy Clusters Work? Dave De Young NOAO Girdwood AK May 2007.
Galaxy Evolution in the Virgo Cluster Bernd Vollmer CDS, Observatoire de Strasbourg, France In collaboration with: P. Amram, C. Balkowski, R. Beck, A.
Three-dimensional MHD Simulations of Jets from Accretion Disks Hiromitsu Kigure & Kazunari Shibata ApJ in press (astro-ph/ ) Magnetohydrodynamic.
Paul AlexanderEvolution of Radio Sources Evolution of Compact Radio Sources Paul Alexander University of Cambridge.
Observations of jet dissipation Robert Laing (ESO/Oxford)
Cosmic Magnetic Fields: Helicity Injection by Supermassive Black Holes, Galaxies and Laboratory Experiments Hui Li 李暉 Los Alamos National Laboratory and.
Relativistic effects in the structure and dynamics of extragalactic jets José Mª Martí Departamento de Astronomía y Astrofísica Universidad de Valencia.
Kelvin-Helmholtz modes revealed by the transversal structure of the jet in Manuel Perucho Andrei P. Lobanov Max-Planck-Institut für Radioastronomie.
Hirotaka Ito Waseda University Collaborators Motoki Kino SISSA ISAS/JAXA ISS Science Project Office Naoki Isobe ISAS/JAXA ISS Science Project Office Nozomu.
Helically Twisted Shocks in the M87 Jet Philip Hardee 1, Andrei Lobanov 2 & Jean Eilek 3 1 The University of Alabama, Tuscaloosa, AL, USA 2 Max-Planck.
Jet dynamics and stability Manel Perucho Universitat de València The innermost regions of relativistic jets and their magnetic fields Granada, June 2013.
The Physics of Jet Dissipation The Physics of Jet Dissipation D. S. De Young National Optical Astronomy Observatory 5 February 2004 X-Ray and Radio Connections.
The Environs of Massive Black Holes and Their Relativistic Jets Greg Taylor NRAO Albuquerque AAS, 2002 June 5.
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
Amplification of twists in magnetic flux tubes Youra Taroyan Department of Physics, Aberystwyth University, users.aber.ac.uk/djp12.
Jets Two classes of jets from X-ray binaries
Jet-Environment Interactions in FRI Radio Galaxies Robert Laing (ESO)
Magnetohydrodynamic Effects in (Propagating) Relativistic Ejecta Yosuke Mizuno Center for Space Plasma and Aeronomic Research University of Alabama in.
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Colliding winds in pulsar binaries S.V.Bogovalov 1, A.V.Koldoba 2,G.V.Ustugova 2, D. Khangulyan 3, F.Aharonian 3 1-National Nuclear Research University.
Stability of Expanding Jets Serguei Komissarov & Oliver Porth University of Leeds and Purdue University TexPoint fonts used in EMF. Read the TexPoint manual.
Feedback Observations and Simulations of Elliptical Galaxies –Daniel Wang, Shikui Tang, Yu Lu, Houjun Mo (UMASS) –Mordecai Mac-Low (AMNH) –Ryan Joung (Princeton)
AGN: Linear and Circular Polarization
Y. Matsuo A), M. Hashimoto A), M. Ono A), S. Nagataki B), K. Kotake C), S. Yamada D), K. Yamashita E) Long Time Evolutionary Simulations in Supernova until.
Turbulence and Magnetic Field Amplification in the Supernova Remnants Tsuyoshi Inoue (NAOJ) Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Kyoto Univ.)
Jet Interactions with the Hot Atmospheres of Clusters & Galaxies B.R. McNamara University of Waterloo Girdwood, Alaska May 23, 2007 L. Birzan, P.E.J. Nulsen,
Multi - emission from large-scale jets Fabrizio Tavecchio INAF – Osservatorio Astronomico di Brera.
JEREMY S. RITTER, MILOS MILOSAVLJEVIC, AND VOLKER BROMM Population III Stars HII Regions Supernovae Discussion The University of Texas at Austin LEFT:
Relativistic MHD Simulations of jets Relativistic MHD Simulations of jets Abstract We have performed 3D RMHD simulations to investigate the stability and.
Relativistic Jets: Krakow June The Interaction of Jets with the Interstellar Medium of Radio Galaxies Geoff Bicknell, Ralph Sutherland, Vicky.
The non-thermal broadband spectral energy distribution of radio galaxies Gustavo E. Romero Instituto Argentino de Radio Astronomía (IAR-CCT La Plata CONICET)
Shock heating by Fast/Slow MHD waves along plasma loops
Turbulent Convection and Anomalous Cross-Field Transport in Mirror Plasmas V.P. Pastukhov and N.V. Chudin.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Magnetic field structure of relativistic jets in AGN M. Roca-Sogorb 1, M. Perucho 2, J.L. Gómez 1, J.M. Martí 3, L. Antón 3, M.A. Aloy 3 & I. Agudo 1 1.
May 23, 2006SINS meeting Structure Formation and Particle Mixing in a Shear Flow Boundary Layer Matthew Palotti University of Wisconsin.
A resolution of the magnetic braking catastrophe during the second collapse cc2yso UWO, May 17, 2010 – Wolf Dapp Wolf B. Dapp & Shantanu Basu.
27 April, 2005PPPL:Jets/disks/lobes 1 A Quick Overview of RG Jet Simulations: Tom Jones University of Minnesota (Sean O’Neill, Ian Tregillis, Dongsu Ryu)
The Physics of Galaxy Formation. Daniel Ceverino (NMSU/Hebrew U.) Anatoly Klypin, Chris Churchill, Glenn Kacprzak (NMSU) Socorro, 2008.
Arman Khalatyan AIP 2006 GROUP meeting at AIP. Outline What is AGN? –Scales The model –Multiphase ISM in SPH SFR –BH model Self regulated accretion ?!
T HE VORTICAL MECHANISM OF GENERATION & COLLIMATION OF THE ASTROPHYSICAL JETS M.G. A BRAHAMYAN Yerevan State University, Armenia.
Star Formation Triggered By First Supernovae Fumitaka Nakamura (Niigata Univ.)
Cooling, AGN Feedback and Star Formation in Simulated Cool-Core Galaxy Clusters Yuan Li University of Michigan Collaborators: Greg L. Bryan (Columbia)
The signature of a wind reverse shock in GRB’s Afterglows
Yosuke Mizuno Center for Space Plasma and Aeronomic Research (CSPAR)
Modelling of non-thermal radiation from pulsar wind nebulae
Compact radio jets and nuclear regions in galaxies
Presentation transcript:

Jet dynamics, stability and energy transport Manel Perucho-Pla Universitat de València High Energy Phenomena in Relativistic Outflows III Barcelona - June 30th, 2011

Introduction The sub-parsec scales: CD instabilities. The parsec scales and beyond: KH instabilities. Nonlinear effects. The largest scales: energy deposition in the ambient. A global (and personal) view: why are jets so stable. Outline

Introduction Carilli A. Bridle’s gallery FRII FRI jet power AGN

Introduction Carilli A. Bridle’s gallery FRII FRI jet power AGN

Introduction Carilli A. Bridle’s gallery FRII FRI jet power AGN

~20 sources with detected jetsin the galaxy (Massi ’05, Ribó ’05). SS 433 Migliari et al. Cygnus X-1 Gallo et al S6 in NGC 7793 Pakull et al., Soria et al Introduction MICROQUASARS

Introduction Copy and paste from Phil Hardee’s talk at IAU 275 meeting (with permission).

The position of the velocity shear with respect to the characteristic radius of the magnetic field has an important effect on the propagation of the CD instabilities. R j = a/2: Jet flows through kinkR j = 4a: Kink propagates with the flow The sub-parsec scales: CD instability There is an efficient conversion of energy from the Poyinting flux to particles. CD INSTABILITY Mizuno et al. (2009, 2010, see poster) Sub-Alfvénic regime

The sub-parsec scales: CD/KH 3D isovolume of density with B-field lines show the jet is disrupted by the growing KH instability Transverse cross section Longitudinal cross section y z x y Mizuno et al Non-relativistic: Hardee & Rosen 1999, 2002: Helical B field stabilizes the jet (magnetic tension).

The parsec scales and beyond: KH instability Perucho et al. (2004a, 2004b) Initial model Linear phase Parameters: –Lorentz factor. –Rest-mass density contrast. –Specific internal energy. –Pressure equilibrium.

The parsec scales and beyond: KH instability Axial velocity pert. Pressure pert. Perp. velocity pert. - KH instabilities saturate when the amplitude of the perturbation of axial velocity (in the jet reference frame) reaches the speed of light (Hanasz 1995, 1997). SATURATION

Sheared jet (d=0.2 Rj) Lorentz factor 20 Sheared jet (d=0.2 Rj) Lorentz factor 5 TIME The parsec scales and beyond: KH instability Perucho et al. 2005, 2007 See also short λ saturation (Hardee 2011)

UST1: efficiently mixed and slowed down. UST2: progressive mixing and slowing. ST: resonant modes avoid disruption and generate a hot shear layer that protects the fast core. The parsec scales and beyond: KH instability

Shear layer (mean profiles of variables). –Upper panels: thermodynamical variables. –Lower panels: dynamical variables. tracer rest mass density specific internal energy Norm. Lorentz factorNorm. Axial momentum Axial velocity UST1UST2ST Perucho et al The parsec scales and beyond: KH instability

The parsec scales and beyond: KH instability 3D RHD simlations of jet stability using RATPENAT = cells 128 processors days Lorentz factor cold hot Perucho et al. 2010

The parsec scales and beyond: KH instability < 10 % 75 % Axial momentum in the jet material versus time 3D RHD simlations of jet stability using RATPENAT = cells 128 processors days Perucho et al. 2010

The parsec scales and beyond: KH instability Overpressured jet standing shocks Agudo et al Perucho et al Different structures may appear at different frequencies in jets with transversal structure. KH pinching instabilities triggered by an injected perturbation.

The parsec scales and beyond: KH instability 3C120 Gómez et al C111 Kadler et al. 2008

The parsec scales and beyond: KH instability Overpressured jet standing shocks Agudo et al Perucho et al Different structures may appear at different frequencies in jets with transversal structure. KH pinching instabilities triggered by an injected perturbation.

The parsec scales and beyond: KH instability : Perucho et al., in preparation

Non-linear effects Instabilities with large amplitude: Rossi et al Recollimation shocks: Perucho & Martí 2007

Non-linear effects Meliani & Keppens 2008 Shocked wind SNR Shocked ISM ISM Shocked wind Shocked ISMISM Inhomogeneous ambient medium Bosch-Ramon, MP, Bordas 2011

Wind-jet interaction in massive X-ray binaries R orb ~ cm cm ~ AU cm ~ 0.13 AU wind from the star cm ~ 0.04 AU y x z Image: NASA/ESA Non-linear effects

Perucho, Bosch-Ramon & Khangulyan 2010 Wind-jet interaction in massive X-ray binaries: 3D simulations t = 977 s t = 192 s P j = erg/s P j = erg/s Non-linear effects

Wind-jet interaction in massive X-ray binaries: 3D simulations Inhomogeneous wind. P j = erg/sInhomogeneous wind. P j = erg/s Non-linear effects Perucho & Bosch-Ramon, in preparation

MS (McNamara et al. 2005). 200 kpc diameter cavities. Shock-wave (M=1.4). pV=10 61 erg. T=10 8 yr. P s = erg/s (from pV). The largest scales: Energy deposition in the ambient

2D axisymmetric hydro simulations with RATPENAT using up to 140 processors (added as the jet grows) during months... ≈10 6 computational hours for the whole project. Jets injected at 1 kpc into a King-profile for density (Hardcastle et al. 2002, Perucho & Martí 2007) in hydrostatic. Corresponding Dark Matter distribution of M Θ within 1 Mpc. Powers: erg/s (J3 - leptonic) – erg/s (J1 –leptonic, J4 - baryonic) – erg/s (J2 - leptonic). Jet radius: 100 pc. Jet velocity: 0.9 – 0.99 c Injected during 16 to 50 Myr. The simulations reproduce the jet evolution up to 200 Myr. Resolution: 50x50 pc or 100x100 pc per cell in the central region (Total 16000x2000 cells, 800 /900 kpc x 500 kpc). The largest scales: Energy deposition in the ambient

10 46 erg/s The largest scales: Energy deposition in the ambient 200 Myr Perucho et al. 2011, submitted

>10 11 M Θ of shocked ambient gas. Red: ambient. Blue: jet. M≈30 The largest scales: Energy deposition in the ambient Our parameters (consistent) V bs = – 0.1 c M bs = 10 – 30 Usual parameters in newtonian simulations V bs = – c M bs = 3 – 5 Martí et al. (1997) Perucho et al. 2011, submitted

Schlieren plot: enhanced density gradients erg/s The largest scales: Energy deposition in the ambient

10 44 erg/s The largest scales: Energy deposition in the ambient

A global (and personal) view: Why are jets so stable Initial expansion phase: the jet generates a bow- shock and it is surrounded by mixed jet and ambient material. –Implications wrt instabilities. Nonlinear processes can affect jet stability: –Reconfinement shocks. –Inhomogeneities in the ambient medium. –Changes at injection (perturbations). –Mass loading by stellar winds and direct interaction with the ambient medium. Jets are not stable!!!!

A global (and personal) view: Why are jets so stable BUT Some stabilizing mechanisms: Certain configurations of the magnetic field (helical field). Saturation due to relativistic limit. –Short λ saturation. –Resonant modes. Pressure confinement (temporal). Energy and momentum are conserved! The jets that we see at the largest scales could be the result of a series of non-linear processes, involving strong changes in their composition.