Taxonomy Boot Camp Panel Text Analytics Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services

Slides:



Advertisements
Similar presentations
Taxonomy Development in an Enterprise Context Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Advertisements

Taxonomy Development An Infrastructure Model Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Top Tips Enterprise Content Management Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Metadata Strategies Alternatives for creating value from metadata Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services.
Improving Navigation and Findability Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Buy, Build, Automate: Why you should Buy Your Taxonomy Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Cyborg Categorization The Basics Tom Reamy Knowledge Architect Intranet Consultant.
Beyond Sentiment New Dimensions for Social Media A Panel Discussion of Trends and Ideas Dave Hills, Twelvefold Media Mike Lazarus, Atigeo, LLC Moderator:
Copyright © 2012, SAS Institute Inc. All rights reserved. #analytics2012 Quick Start for Text Analytics Tom Reamy Chief Knowledge Architect KAPS Group.
Enterprise Information Architecture A Platform for Integrating Your Organization’s Information and Knowledge Activities Tom Reamy Chief Knowledge Architect.
Faceted Navigation: Search and Browse Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Taxonomy Development Case Studies
Innovation in Search? Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Model of Taxonomy Development Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Knowledge Architecture Process & Case Studies Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Semantic Infrastructure Workshop Development Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Semantic Infrastructure Workshop Development Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Semantic Infrastructure Workshop Applications Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Improving Search for Discovery Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge Architecture Professional.
Automatic Facets: Faceted Navigation and Entity Extraction Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services.
Copyright © 2011, SAS Institute Inc. All rights reserved. #analytics2011 Text Analytics Evaluation A Case Study: Amdocs Tom Reamy Chief Knowledge Architect.
Beyond Sentiment Mining Social Media A Panel Discussion of Trends and Ideas Marie Wallace, IBM Marcello Pellacani, Expert System Fabio Lazzarini, CRIBIS.
Enterprise Semantic Infrastructure Workshop Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Beyond Sentiment Mining Social Media Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Facets and Faceted Navigation Development Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Expanding Enterprise Roles for Librarians Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics Workshop Development Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Best of Both Worlds Text Analytics and Text Mining Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Selecting Taxonomy Software Who, Why, How Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Overview of Search Engines
Taxonomy and Knowledge Organization Taxonomy in Context Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Building a Foundation for Info Apps Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge Architecture Professional.
Enterprise Search/ Text Analytics Evaluation Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics And Text Mining Best of Text and Data
Best of All Worlds Text Analytics and Text Mining and Taxonomy Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services.
New Directions in Social Media Tom Reamy Chief Knowledge Architect KAPS Group
SemTech Text Analytics Evaluation Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics and Taxonomies Tom Reamy Chief Knowledge Architect KAPS Group
Taxonomies and Faceted Navigation Getting the Best of Both
Mashup Mindset Moving Mashups to Next Level Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Applying Semantics to Search Text Analytics Tom Reamy Chief Knowledge Architect KAPS Group Enterprise Search Summit New York.
Text Analytics Workshop Applications Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Taxonomy and Social Media Social Taxonomies Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge Architecture.
Content Categorization Tools Taxonomies & Technologies for Infrastructure Solutions Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture.
Text Analytics Summit Text Analytics Evaluation Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics Software Choosing the Right Fit Tom Reamy Chief Knowledge Architect KAPS Group Text Analytics World October 20.
New Directions in Social Media Tom Reamy Chief Knowledge Architect KAPS Group
Semantic Infrastructure Workshop Applications Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Faceted Navigation Design Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Metadata and Taxonomies The Best of Both Worlds Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Integrating an Enterprise Taxonomy with Local Variations Tom Reamy Chief Knowledge Architect KAPS Group Taxonomy Boot Camp.
Text Analytics Mini-Workshop Quick Start Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge Architecture Professional.
Enterprise Semantic Infrastructure Workshop Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Folksonomy Folktales Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Selecting Taxonomy Software Who, Why, How Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics Workshop Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Advanced Semantics and Search Beyond Tag Clouds and Taxonomies Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services.
Text Analytics for Search Applications Workshop Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Text Analytics A Tool for Taxonomy Development Tom Reamy Chief Knowledge Architect KAPS Group Program Chair – Text Analytics World Knowledge Architecture.
Text Analytics Workshop Applications Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Taxonomy and Text Analytics Case Studies Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Taxonomy Development An Infrastructure Model Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services
Deep Text New Approaches in Text Analytics and Knowledge Organization Tom Reamy Chief Knowledge Architect KAPS Group Author: Deep.
Tom Reamy Chief Knowledge Architect KAPS Group
Tom Reamy Chief Knowledge Architect KAPS Group
Enterprise Social Networks A New Semantic Foundation
Program Chair: Tom Reamy Chief Knowledge Architect
Text Analytics Workshop: Introduction
Program Chair: Tom Reamy Chief Knowledge Architect
Expertise Location Basic Level Categories
Presentation transcript:

Taxonomy Boot Camp Panel Text Analytics Tom Reamy Chief Knowledge Architect KAPS Group Knowledge Architecture Professional Services

2 Agenda  Taxonomy and Text Analytics – Search, Taxonomy, and Text Analytics  Case Study – Taxonomy Development – Text Analytics as a Taxonomy tool – Case Studies – Expertise & Sentiment & Beyond  Future of Text Analytics and Taxonomy – Beyond Indexing - Categorization – Sentiment, Expertise, Ontologies

3 Taxonomy and Text Analytics Text Analytics Features  Noun Phrase Extraction – Catalogs with variants, rule based dynamic – Multiple types, custom classes – entities, concepts, events – Feeds facets  Summarization – Customizable rules, map to different content  Fact Extraction – Relationships of entities – people-organizations-activities – Ontologies – triples, RDF, etc.  Sentiment Analysis – Rules – Objects and phrases – positive and negative

4 Taxonomy and Text Analytics Text Analytics Features  Auto-categorization – Training sets – Bayesian, Vector space – Terms – literal strings, stemming, dictionary of related terms – Rules – simple – position in text (Title, body, url) – Semantic Network – Predefined relationships, sets of rules – Boolean– Full search syntax – AND, OR, NOT – Advanced – DIST (#), PARAGRAPH, SENTENCE  This is the most difficult to develop  Build on a Taxonomy  Combine with Extraction – If any of list of entities and other words

Case Study – Categorization & Sentiment 5

6

7 Search, Taxonomy, and Text Analytics Elements  Multiple Knowledge Structures – Facet – orthogonal dimension of metadata – Taxonomy - Subject matter / aboutness – Categorization, clusters, entity extraction into facets  A Hybrid Model of ECM and Metadata – Authors, editors-librarians, Text Analytics – Submit a document -> TA generates metadata, extracts concepts, Suggests categorization (keywords) -> author OK’s (easy task) -> librarian monitors for issues – Use results as input into analytics  And/or Dynamic categorization-extraction at results time

8

9

10 Search, Taxonomy and Text Analytics Multiple Applications  Platform for Information Applications – Content Aggregation – Duplicate Documents – save millions! – Text Mining – BI, CI – sentiment analysis – Combine with Data Mining – disease symptoms, new Predictive Analytics – Social – Hybrid folksonomy / taxonomy / auto-metadata – Social – expertise, categorize tweets and blogs, reputation – Ontology – travel assistant – SIRI  Use your Imagination!

Taxonomy and Text Analytics Case Study – Taxonomy Development  Problem – 200,000 new uncategorized documents  Old taxonomy –need one that reflects change in corpus  Text mining, entity extraction, categorization  Content – 250,000 large documents, search logs, etc.  Bottom Up- terms in documents – frequency, date,  Clustering – suggested categories  Clustering – chunking for editors  Entity Extraction – people, organizations, Programming languages  Time savings – only feasible way to scan documents  Quality – important terms, co-occurring terms 11

Case Study – Taxonomy Development 12

Case Study – Taxonomy Development 13

Case Study – Taxonomy Development 14

15 Taxonomy and Text Analytics Applications Expertise Analysis  Sentiment Analysis to Expertise Analysis(KnowHow) – Know How, skills, “tacit” knowledge  Experts write and think differently  Basic level is lower, more specific – Levels: Superordinate – Basic – Subordinate Mammal – Dog – Golden Retriever – Furniture – chair – kitchen chair  Experts organize information around processes, not subjects  Build expertise categorization rules

16 Expertise Analysis Expertise – application areas  Taxonomy / Ontology development /design – audience focus – Card sorting – non-experts use superficial similarities  Business & Customer intelligence – add expertise to sentiment – Deeper research into communities, customer s  Text Mining - Expertise characterization of writer, corpus  eCommerce – Organization/Presentation of information – expert, novice  Expertise location- Generate automatic expertise characterization based on documents  Experiments - Pronoun Analysis – personality types – Essay Evaluation Software - Apply to expertise characterization Model levels of chunking, procedure words over content

17 Beyond Sentiment: Behavior Prediction Case Study – Telecom Customer Service  Problem – distinguish customers likely to cancel from mere threats  Analyze customer support notes  General issues – creative spelling, second hand reports  Develop categorization rules – First – distinguish cancellation calls – not simple – Second - distinguish cancel what – one line or all – Third – distinguish real threats

18 Beyond Sentiment Behavior Prediction – Case Study  Basic Rule – (START_20, (AND, – (DIST_7,"[cancel]", "[cancel-what-cust]"), – (NOT,(DIST_10, "[cancel]", (OR, "[one-line]", "[restore]", “[if]”)))))  Examples: – customer called to say he will cancell his account if the does not stop receiving a call from the ad agency. – cci and is upset that he has the asl charge and wants it off or her is going to cancel his act – ask about the contract expiration date as she wanted to cxl teh acct Combine sophisticated rules with sentiment statistical training and Predictive Analytics

19 Beyond Sentiment - Wisdom of Crowds Crowd Sourcing Technical Support  Example – Android User Forum  Develop a taxonomy of products, features, problem areas  Develop Categorization Rules: – “I use the SDK method and it isn't to bad a all. I'll get some pics up later, I am still trying to get the time to update from fresh 1.0 to 1.1.” – Find product & feature – forum structure – Find problem areas in response, nearby text for solution  Automatic – simply expose lists of “solutions” – Search Based application  Human mediated – experts scan and clean up solutions

20 Text Analytics Development Best Practices - Principles  Categorization taxonomy structure – Tradeoff of depth and complexity of rules – Multiple avenues – facets, terms, rules, etc. No right balance – Recall-precision balance is application specific – Training sets of starting points, rules rule – Need for custom development  Different kinds of taxonomies – Sentiment – products and features – Expertise – process – Categorization – smaller – power in categorization rules – Facets – combine – more orthogonal categories

21 Taxonomy and Text Analytics Conclusions  Text Analytics (Entity extraction and auto-categorization, sentiment analysis) are an essential platform  Text Analytics add a new dimension to taxonomy – Taxonomists are an essential resource – understand information structure  Enterprise Search – Hybrid ECM model with text analytics  Future – new kinds of applications: – Text Mining and Data mining, research tools, sentiment – Social Media – multiple sources for multiple applications – Beyond Sentiment – expertise applications, behavior – NeuroAnalytics – cognitive science meets taxonomy and more Watson is just the start

Questions? Tom Reamy KAPS Group Knowledge Architecture Professional Services