ECEN 301Discussion #14 – AC Circuit Analysis1 DateDayClass No. TitleChaptersHW Due date Lab Due date Exam 20 OctMon14AC Circuit Analysis4.5 NO LAB 21 OctTue.

Slides:



Advertisements
Similar presentations
Impedance and Admittance. Objective of Lecture Demonstrate how to apply Thévenin and Norton transformations to simplify circuits that contain one or more.
Advertisements

ECEN 301Discussion #18 – Operational Amplifiers1 DateDayClass No. TitleChaptersHW Due date Lab Due date Exam 3 NovMon18Operational Amplifiers 8.4 LAB 6.
Ch4 Sinusoidal Steady State Analysis 4.1 Characteristics of Sinusoidal 4.2 Phasors 4.3 Phasor Relationships for R, L and C 4.4 Impedance 4.5 Parallel and.
TECHNIQUES OF DC CIRCUIT ANALYSIS:
LectR1EEE 2021 Exam #1 Review Dr. Holbert February 18, 2008.
ECEN 301Discussion #6 – Things Practical1 DateDayClass No. TitleChaptersHW Due date Lab Due date Exam 22 SeptMon6Things Practical2.6 – 2.8 LAB 2 23 SeptTue.
EECS 42, Spring 2005Week 3a1 Announcements New topics: Mesh (loop) method of circuit analysis Superposition method of circuit analysis Equivalent circuit.
Topic 1: DC & AC Circuit Analyses
Lecture 3a, Prof. WhiteEE 42/100, Spring EE 42/100 Discussion sections SectionDay/TimeRoomGSI Dis101M 3-4pm241 CoryLiu, Vincent Dis102W 4-5pm241.
ECE201 Exam #2 Review1 Exam #2 Review Dr. Holbert March 27, 2006.
Lecture 6, Slide 1EECS40, Fall 2004Prof. White Slides from Lecture 6 with clearer markups 16 Sept
Lect3EEE 2021 Voltage and Current Division; Superposition Dr. Holbert January 23, 2008.
Lecture 221 Series and Parallel Resistors/Impedances.
Lecture 16 AC Circuit Analysis (1) Hung-yi Lee. Textbook Chapter 6.1.
AC i-V relationship for R, L, and C Resistive Load Source v S (t)  Asin  t V R and i R are in phase Phasor representation: v S (t) =Asin  t = Acos(
Lecture 6, Slide 1EECS40, Fall 2004Prof. White Lecture #6 OUTLINE Complete Mesh Analysis Example(s) Superposition Thévenin and Norton equivalent circuits.
Lesson 23 AC Source Tx AC Thèvenin
Chapter 20 AC Network Theorems.
Thévenin’s and Norton’s Theorems
Lecture 27 Review Phasor voltage-current relations for circuit elements Impedance and admittance Steady-state sinusoidal analysis Examples Related educational.
Chapter 10 Sinusoidal Steady-State Analysis
L14 § 4.5 Thevenin’s Theorem A common situation: Most part of the circuit is fixed, only one element is variable, e.g., a load: i0i0 +  +  The fixed.
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 16 Phasor Circuits, AC.
ECEN 301Discussion #13 – Phasors1 Imaginary JS-H 1: But, exerting all my powers to call upon God to deliver me out of the power of this enemy which.
AC STEADY-STATE ANALYSIS SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits with sinusoidal independent sources and modeling of sinusoids in.
ECEN 301Discussion #9 – Equivalent Circuits1 Equivalence - Equality Mosiah 29: Therefore they relinquished their desires for a king, and became exceedingly.
EGR 2201 Unit 12 Sinusoidal Steady-State Analysis  Read Alexander & Sadiku, Chapter 10.  Homework #12 and Lab #12 due next week.  Quiz next week.
EENG 2610: Circuit Analysis Class 8: Thevenin’s and Norton’s Theorems Oluwayomi Adamo Department of Electrical Engineering College of Engineering, University.
ECEN 301Discussion #8 – Network Analysis1 DateDayClass No. TitleChaptersHW Due date Lab Due date Exam 29 SeptMon8Network Analysis3.4 – 3.5 NO LAB 30 SepTue.
1 ECE 3144 Lecture 20 Dr. Rose Q. Hu Electrical and Computer Engineering Department Mississippi State University.
ECEN 301Discussion #10 – Energy Storage1 DateDayClass No. TitleChaptersHW Due date Lab Due date Exam 6 OctMon10Energy Storage3.7, 4.1NO LAB 7 OctTue NO.
Chapter 20 AC Network Theorems. Superposition Theorem The voltage across (or current through) an element is determined by summing the voltage (or current)
CIRCUIT ANALYSIS USING LAPLACE TRANSFORM
AC Analysis Using Thevenin's Theorem and Superposition
ECEN 301Discussion #20 – Exam 2 Review1 DateDayClass No. TitleChaptersHW Due date Lab Due date Exam 10 NovMon20Exam Review LAB 7 EXAM 2 11 NovTue 12 NovWed21Boolean.
ECE201 Lect-71 Series and Parallel Resistor Combinations (2.5, 7.5) Dr. Holbert September 11, 2001.
Grossman/Melkonian Chapter 3 Resistive Network Analysis.
Tutorial 2 Review Ohms law, KVL and KCL The Wheatstone Bridge
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 18 Network Theorems (AC)
CHAPTER I APPLICATION OF CIRCUIT LAWS. 2 Introduction Generally, we require 3 steps to analyze AC Circuit Transform the circuit to the phasor / frequency.
ECEN 301Discussion #7 – Node and Mesh Methods1 DateDayClass No. TitleChaptersHW Due date Lab Due date Exam 24 SeptWed7Network Analysis3.1 – SeptThu.
ECEN 301Discussion #16 – Frequency Response1 Easier to Maintain Than to Retake Alma 59:9 9 And now as Moroni had supposed that there should be men sent.
1 Summary of Circuits Theory. 2 Voltage and Current Sources Ideal Voltage Source It provides an output voltage v s which is independent of the current.
ECEN 301Discussion #12 –Exam 1 Review1 Examine Yourselves Moroni 10: 3 3 Behold, I would exhort you that when ye shall read these things, if it be wisdom.
Circuit Theorems ELEC 202 Electric Circuit Analysis II.
CHAPTER 3 NETWORK THEOREM
ECE 4991 Electrical and Electronic Circuits Chapter 3.
Thevenin and Norton “Equivalent” Circuits
Chapter 6(b) Sinusoidal Steady State Analysis
1 ECE 3144 Lecture 32 Dr. Rose Q. Hu Electrical and Computer Engineering Department Mississippi State University.
ABE425 Engineering Measurement Systems Circuit Analysis Dr. Tony E. Grift Dept. of Agricultural & Biological Engineering University of Illinois.
Objective of Lecture State Thévenin’s and Norton Theorems. Chapter 4.5 and 4.6 Fundamentals of Electric Circuits Demonstrate how Thévenin’s and Norton.
Chapter 19 Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd © 2010 Pearson Higher Education, Upper Saddle River, NJ All Rights.
Thevenin Theorem in Sinusoidal Steady Analysis Aim: To obtain a simple equivalent circuit for a 1-port circuit that consists of linear, time-invariant.
Kevin D. Donohue, University of Kentucky1 Additional Analysis Techniques for Linear Circuits Models and Equivalent Circuits for Analysis and Design.
Techniques of Circuit Analysis
Chapter 9 Sinusoids and Phasors
CHAPTER 1: SINUSOIDS AND PHASORS
Problems With Assistance Module 8 – Problem 4 Filename: PWA_Mod08_Prob04.ppt This problem is adapted from Quiz #6 from the fall of 1998 in ECE 2300 Circuit.
Circuit Theorems 1.  Introduction  Linearity property  Superposition  Source transformations  Thevenin’s theorem  Norton’s theorem  Maximum power.
Network Theorems (AC). OBJECTIVES Be able to apply the superposition theorem to ac networks with independent and dependent sources. Become proficient.
Chapter 6(b) Sinusoidal Steady State Analysis
Chapter 20 AC Network Theorems.
Discussion #9 – Equivalent Circuits
ECE 3301 General Electrical Engineering
Discussion #12 –Exam 1 Review
Chapter 10 – AC Circuits Recall: Element Impedances and Admittances
Chapter 10 – AC Circuits Recall: Element Impedances and Admittances
Methods of Analysis and Network Theorems of A.C. Circuits
Presentation transcript:

ECEN 301Discussion #14 – AC Circuit Analysis1 DateDayClass No. TitleChaptersHW Due date Lab Due date Exam 20 OctMon14AC Circuit Analysis4.5 NO LAB 21 OctTue NO LAB 22 OctWed15Transient Response 1 st Order Circuits OctThu 24 OctFri Recitation HW 6 25 OctSat 26 OctSun 27 OctMon16Transient Response 2 nd Order Circuits 5.5 LAB 5 28 OctTueExam 1 Schedule…

ECEN 301Discussion #14 – AC Circuit Analysis2 Obedience = Happiness Mosiah 2:41 41 And moreover, I would desire that ye should consider on the blessed and happy state of those that keep the commandments of God. For behold, they are blessed in all things, both temporal and spiritual; and if they hold out faithful to the end they are received into heaven, that thereby they may dwell with God in a state of never-ending happiness. O remember, remember that these things are true; for the Lord God hath spoken it.

ECEN 301Discussion #14 – AC Circuit Analysis3 Lecture 14 – AC Circuit Analysis Phasors allow the use of familiar network analysis

ECEN 301Discussion #14 – AC Circuit Analysis4 RLC Circuits Linear passive circuit elements: resistors (R), inductors (L), and capacitors (C) (a.k.a. RLC circuits) ÙAssume RLC circuit sources are sinusoidal Z R1 Z R2 V s (j ω) +–+– IxIx Z L ZCZC I a (jω) I b (jω) R 1 R2R2 ixix L C i a (t) i b (t) v s (t) +–+– ~ Time domainFrequency (phasor) domain

ECEN 301Discussion #14 – AC Circuit Analysis5 RLC Circuits - Series Impedances uSeries Rule: two or more circuit elements are said to be in series if the current from one element exclusively flows into the next element. ÙImpedances in series add the same way resistors in series add Z EQ Z1Z1 ∙ ∙ ∙ Z2Z2 Z3Z3 ZnZn ZNZN

ECEN 301Discussion #14 – AC Circuit Analysis6 RLC Circuits - Parallel Impedances uParallel Rule: two or more circuit elements are said to be in parallel if the elements share the same terminals ÙImpedances in parallel add the same way resistors in parallel add Z1Z1 Z2Z2 Z3Z3 ZnZn ZNZN Z EQ

ECEN 301Discussion #14 – AC Circuit Analysis7 RLC Circuits AC Circuit Analysis 1.Identify the AC sources and note the excitation frequency (ω) 2.Convert all sources to the phasor domain 3.Represent each circuit element by its impedance 4.Solve the resulting phasor circuit using network analysis methods 5.Convert from the phasor domain back to the time domain

ECEN 301Discussion #14 – AC Circuit Analysis8 RLC Circuits uExample1: find i s (t) Ùv s (t) = 10cos(ωt), ω = 377 rad/s R 1 = 50Ω, R 2 = 200Ω, C = 100uF R 1 R2R2 C i s (t) v s (t) +–+– ~

ECEN 301Discussion #14 – AC Circuit Analysis9 RLC Circuits uExample1: find i s (t) Ùv s (t) = 10cos(ωt), ω = 377 rad/s R 1 = 50Ω, R 2 = 200Ω, C = 100uF R 1 R2R2 C i s (t) v s (t) +–+– ~ 1.Note frequencies of AC sources Only one AC source - ω = 377 rad/s

ECEN 301Discussion #14 – AC Circuit Analysis10 RLC Circuits uExample1: find i s (t) Ùv s (t) = 10cos(ωt), ω = 377 rad/s R 1 = 50Ω, R 2 = 200Ω, C = 100uF R 1 R2R2 C i s (t) v s (t) +–+– ~ Z 1 = R 1 Z 2 =R 2 Z 3 =1/jωC I s (jω) V s =10e j0 +–+– ~ 1.Note frequencies of AC sources 2.Convert to phasor domain

ECEN 301Discussion #14 – AC Circuit Analysis11 RLC Circuits uExample1: find i s (t) Ùv s (t) = 10cos(ωt), ω = 377 rad/s R 1 = 50Ω, R 2 = 200Ω, C = 100uF Z 1 = R 1 Z 2 =R 2 Z 3 =1/jωC I s (jω) V s =10e j0 +–+– ~ 1.Note frequencies of AC sources 2.Convert to phasor domain 3.Represent each element by its impedance

ECEN 301Discussion #14 – AC Circuit Analysis12 RLC Circuits uExample1: find i s (t) Ùv s (t) = 10cos(ωt), ω = 377 rad/s R 1 = 50Ω, R 2 = 200Ω, C = 100uF Z 1 = R 1 Z 2 =R 2 Z 3 =1/jωC I s (jω) V s =10e j0 +–+– ~ 1.Note frequencies of AC sources 2.Convert to phasor domain 3.Represent each element by its impedance 4.Solve using network analysis Use node voltage and Ohm’s law Node a

ECEN 301Discussion #14 – AC Circuit Analysis13 RLC Circuits uExample1: find i s (t) Ùv s (t) = 10cos(ωt), ω = 377 rad/s R 1 = 50Ω, R 2 = 200Ω, C = 100uF Z 1 = R 1 Z 2 =R 2 Z 3 =1/jωC I s (jω) V s =10e j0 +–+– ~ 4.Solve using network analysis Use node voltage and Ohm’s law Node a

ECEN 301Discussion #14 – AC Circuit Analysis14 RLC Circuits uExample1: find i s (t) Ùv s (t) = 10cos(ωt), ω = 377 rad/s R 1 = 50Ω, R 2 = 200Ω, C = 100uF Z 1 = R 1 Z 2 =R 2 Z 3 =1/jωC I s (jω) V s =10e j0 +–+– ~ 4.Solve using network analysis Use node voltage and Ohm’s law Node a

ECEN 301Discussion #14 – AC Circuit Analysis15 RLC Circuits uExample1: find i s (t) Ùv s (t) = 10cos(ωt), ω = 377 rad/s R 1 = 50Ω, R 2 = 200Ω, C = 100uF Z 1 = R 1 Z 2 =R 2 Z 3 =1/jωC I s (jω) V s =10e j0 +–+– ~ 4.Solve using network analysis Use node voltage and Ohm’s law Node a

ECEN 301Discussion #14 – AC Circuit Analysis16 RLC Circuits uExample1: find i s (t) Ùv s (t) = 10cos(ωt), ω = 377 rad/s R 1 = 50Ω, R 2 = 200Ω, C = 100uF Z 1 = R 1 Z 2 =R 2 Z 3 =1/jωC I s (jω) V s =10e j0 +–+– ~ 4.Solve using network analysis Use node voltage and Ohm’s law 5.Convert to time domain Node a

ECEN 301Discussion #14 – AC Circuit Analysis17 RLC Circuits uExample2: find i 1 and i 2 Ùv s (t) = 155cos(ωt)V, ω = 377 rads/s, R s = 0.5Ω, R 1 = 2Ω, R 2 = 0.2Ω, L 1 = 0.1H, L 2 = 20mH R s R1R1 i s (t) v s (t) +–+– ~ L2L2 R2R2 L1L1 i 1 (t) i 2 (t)

ECEN 301Discussion #14 – AC Circuit Analysis18 RLC Circuits uExample2: find i 1 and i 2 Ùv s (t) = 155cos(ωt)V, ω = 377 rads/s, R s = 0.5Ω, R 1 = 2Ω, R 2 = 0.2Ω, L 1 = 0.1H, L 2 = 20mH R s R1R1 i s (t) v s (t) +–+– ~ L2L2 R2R2 L1L1 i 1 (t) i 2 (t) 1.Note frequencies of AC sources Only one AC source - ω = 377 rad/s

ECEN 301Discussion #14 – AC Circuit Analysis19 RLC Circuits uExample2: find i 1 and i 2 Ùv s (t) = 155cos(ωt)V, ω = 377 rads/s, R s = 0.5Ω, R 1 = 2Ω, R 2 = 0.2Ω, L 1 = 0.1H, L 2 = 20mH R s R1R1 i s (t) v s (t) +–+– ~ L2L2 R2R2 L1L1 i 1 (t) i 2 (t) Z s = R s Z R1 =R 1 Z R2 =R 2 I s (jω) V s =155e j0 +–+– ~ Z L1 =jωL 1 Z L2 =jωL 2 I 1 (jω) I 2 (jω) 1.Note frequencies of AC sources 2.Convert to phasor domain

ECEN 301Discussion #14 – AC Circuit Analysis20 RLC Circuits uExample2: find i 1 and i 2 Ùv s (t) = 155cos(ωt)V, ω = 377 rads/s, R s = 0.5Ω, R 1 = 2Ω, R 2 = 0.2Ω, L 1 = 0.1H, L 2 = 20mH Z s = R s Z R1 =R 1 Z R2 =R 2 I s (jω) V s =155e j0 +–+– ~ Z L1 =jωL 1 Z L2 =jωL 2 I 1 (jω) I 2 (jω) 1.Note frequencies of AC sources 2.Convert to phasor domain 3.Represent each element by its impedance

ECEN 301Discussion #14 – AC Circuit Analysis21 RLC Circuits uExample2: find i 1 and i 2 Ùv s (t) = 155cos(ωt)V, ω = 377 rads/s, R s = 0.5Ω, R 1 = 2Ω, R 2 = 0.2Ω, L 1 = 0.1H, L 2 = 20mH Z s = R s Z 1 =Z R1 +Z L1 Z 2 =Z R2 +Z L2 I s (jω) V s =155e j0 +–+– ~ I 1 (jω) I 2 (jω) 4.Solve using network analysis Ohm’s law

ECEN 301Discussion #14 – AC Circuit Analysis22 RLC Circuits uExample2: find i 1 and i 2 Ùv s (t) = 155cos(ωt)V, ω = 377 rads/s, R s = 0.5Ω, R 1 = 2Ω, R 2 = 0.2Ω, L 1 = 0.1H, L 2 = 20mH Z s Z1Z1 Z2Z2 I s (jω) V s =155e j0 +–+– ~ I 1 (jω) I 2 (jω) 4.Solve using network analysis KCL V(jω)

ECEN 301Discussion #14 – AC Circuit Analysis23 RLC Circuits uExample2: find i 1 and i 2 Ùv s (t) = 155cos(ωt)V, ω = 377 rads/s, R s = 0.5Ω, R 1 = 2Ω, R 2 = 0.2Ω, L 1 = 0.1H, L 2 = 20mH Z s Z1Z1 Z2Z2 I s (jω) V s =155e j0 +–+– ~ I 1 (jω) I 2 (jω) 4.Solve using network analysis Ohm’s Law V(jω)

ECEN 301Discussion #14 – AC Circuit Analysis24 RLC Circuits uExample2: find i 1 and i 2 Ùv s (t) = 155cos(ωt)V, ω = 377 rads/s, R s = 0.5Ω, R 1 = 2Ω, R 2 = 0.2Ω, L 1 = 0.1H, L 2 = 20mH Z s Z1Z1 Z2Z2 I s (jω) V s =155e j0 +–+– ~ I 1 (jω) I 2 (jω) 5.Convert to Time domain V(jω)

ECEN 301Discussion #14 – AC Circuit Analysis25 RLC Circuits uExample3: find i a (t) and i b (t) Ùv s (t) = 15cos(1500t)V, R 1 = 100Ω, R 2 = 75Ω, L = 0.5H, C = 1uF R 1 v s (t) +–+– ~ R2R2 L C i a (t) i b (t)

ECEN 301Discussion #14 – AC Circuit Analysis26 RLC Circuits uExample3: find i a (t) and i b (t) Ùv s (t) = 15cos(1500t)V, R 1 = 100Ω, R 2 = 75Ω, L = 0.5H, C = 1uF R 1 v s (t) +–+– ~ R2R2 L C i a (t) i b (t) 1.Note frequencies of AC sources Only one AC source - ω = 1500 rad/s

ECEN 301Discussion #14 – AC Circuit Analysis27 RLC Circuits uExample3: find i a (t) and i b (t) Ùv s (t) = 15cos(1500t)V, R 1 = 100Ω, R 2 = 75Ω, L = 0.5H, C = 1uF R 1 v s (t) +–+– ~ R2R2 L C i a (t) i b (t) 1.Note frequencies of AC sources 2.Convert to phasor domain Z R1 V s (jω) +–+– ~ Z R2 I a (jω) Z L Z C I b (jω)

ECEN 301Discussion #14 – AC Circuit Analysis28 RLC Circuits uExample3: find i a (t) and i b (t) Ùv s (t) = 15cos(1500t)V, R 1 = 100Ω, R 2 = 75Ω, L = 0.5H, C = 1uF Z R1 V s (jω) +–+– ~ Z R2 I a (jω) Z L Z C I b (jω) 1.Note frequencies of AC sources 2.Convert to phasor domain 3.Represent each element by its impedance

ECEN 301Discussion #14 – AC Circuit Analysis29 RLC Circuits uExample3: find i a (t) and i b (t) Ùv s (t) = 15cos(1500t)V, R 1 = 100Ω, R 2 = 75Ω, L = 0.5H, C = 1uF +Z R1 – V s (jω) +–+– ~ + Z R2 – I a (jω) +Z L – + Z C – I b (jω) 4.Solve using network analysis Mesh current

ECEN 301Discussion #14 – AC Circuit Analysis30 RLC Circuits uExample3: find i a (t) and i b (t) Ùv s (t) = 15cos(1500t)V, R 1 = 100Ω, R 2 = 75Ω, L = 0.5H, C = 1uF +Z R1 – V s (jω) +–+– ~ + Z R2 – I a (jω) +Z L – + Z C – I b (jω) 4.Solve using network analysis Mesh current

ECEN 301Discussion #14 – AC Circuit Analysis31 RLC Circuits uExample3: find i a (t) and i b (t) Ùv s (t) = 15cos(1500t)V, R 1 = 100Ω, R 2 = 75Ω, L = 0.5H, C = 1uF +Z R1 – V s (jω) +–+– ~ + Z R2 – I a (jω) +Z L – + Z C – I b (jω) 5.Convert to Time domain

ECEN 301Discussion #14 – AC Circuit Analysis32 AC Equivalent Circuits Thévenin and Norton equivalent circuits apply in AC analysis ÙEquivalent voltage/current will be complex and frequency dependent Load +V–+V– I Source V T (jω) +–+– ZTZT Load +V–+V– I I N (jω) ZNZN Load +V–+V– I Norton Equivalent Thévenin Equivalent

ECEN 301Discussion #14 – AC Circuit Analysis33 AC Equivalent Circuits Computation of Thévenin and Norton Impedances: 1.Remove the load (open circuit at load terminal) 2.Zero all independent sources ÙVoltage sources short circuit (v = 0) ÙCurrent sources open circuit (i = 0) 3.Compute equivalent impedance across load terminals (with load removed) NB: same procedure as equivalent resistance Z L Z 1 V s (j ω) +–+– Z 3 Z2Z2 Z 4 a b Z 1 Z 3 Z2Z2 Z 4 a b ZTZT

ECEN 301Discussion #14 – AC Circuit Analysis34 AC Equivalent Circuits Computing Thévenin voltage: 1.Remove the load (open circuit at load terminals) 2.Define the open-circuit voltage (V oc ) across the load terminals 3.Chose a network analysis method to find V oc Ùnode, mesh, superposition, etc. 4.Thévenin voltage V T = V oc Z 1 V s (j ω) +–+– Z 3 Z2Z2 Z 4 a b Z 1 V s (j ω) +–+– Z 3 Z2Z2 Z 4 a b +VT–+VT– NB: same procedure as equivalent resistance

ECEN 301Discussion #14 – AC Circuit Analysis35 AC Equivalent Circuits Computing Norton current: 1.Replace the load with a short circuit 2.Define the short-circuit current (I sc ) across the load terminals 3.Chose a network analysis method to find I sc Ùnode, mesh, superposition, etc. 4.Norton current I N = I sc Z 1 V s (j ω) +–+– Z 3 Z2Z2 Z 4 a b Z 1 V s (j ω) +–+– Z 3 Z2Z2 Z 4 a b ININ NB: same procedure as equivalent resistance

ECEN 301Discussion #14 – AC Circuit Analysis36 AC Equivalent Circuits uExample4: find the Thévenin equivalent Ùω = 10 3 rads/s, R s = 50Ω, R L = 50Ω, L = 10mH, C = 0.1uF R s v s (t) +–+– ~ RLRL L C +vL–+vL–

ECEN 301Discussion #14 – AC Circuit Analysis37 AC Equivalent Circuits uExample4: find the Thévenin equivalent Ùω = 10 3 rads/s, R s = 50Ω, R L = 50Ω, L = 10mH, C = 0.1uF R s v s (t) +–+– ~ RLRL L C +vL–+vL– 1.Note frequencies of AC sources Only one AC source - ω = 10 3 rad/s

ECEN 301Discussion #14 – AC Circuit Analysis38 AC Equivalent Circuits uExample4: find the Thévenin equivalent Ùω = 10 3 rads/s, R s = 50Ω, R L = 50Ω, L = 10mH, C = 0.1uF R s v s (t) +–+– ~ RLRL L C +vL–+vL– 1.Note frequencies of AC sources 2.Convert to phasor domain Z s Z LD +–+– ~ ZLZL ZCZC V s (jω)

ECEN 301Discussion #14 – AC Circuit Analysis39 AC Equivalent Circuits uExample4: find the Thévenin equivalent Ùω = 10 3 rads/s, R s = 50Ω, R L = 50Ω, L = 10mH, C = 0.1uF 1.Note frequencies of AC sources 2.Convert to phasor domain 3.Find Z T Remove load & zero sources Z s ZLZL ZCZC

ECEN 301Discussion #14 – AC Circuit Analysis40 AC Equivalent Circuits uExample4: find the Thévenin equivalent Ùω = 10 3 rads/s, R s = 50Ω, R L = 50Ω, L = 10mH, C = 0.1uF 1.Note frequencies of AC sources 2.Convert to phasor domain 3.Find Z T Remove load & zero sources 4.Find V T (jω) Remove load Z s +–+– ~ ZLZL ZCZC V s (jω) + V T (jω) – NB: Since no current flows in the circuit once the load is removed:

ECEN 301Discussion #14 – AC Circuit Analysis41 AC Equivalent Circuits uExample4: find the Thévenin equivalent Ùω = 10 3 rads/s, R s = 50Ω, R L = 50Ω, L = 10mH, C = 0.1uF Z s Z LD +–+– ~ ZLZL ZCZC V s (jω) Z T +–+– ~ V T (jω) Z LD