overview Motivation Ongoing research on VANETs Introduction Objectives Applications Possible attacks Conclusion
Motivation Safety and transport efficiency Congestion costs the U.S. economy over $100 billion per year. Vehicle occupancy has dropped 7% in the last two decades. In Europe around 40,000 people die and more than 1.5 millions are injured every year on the roads Traffic jams generate a tremendous waste of time and of fuel
Ongoing research on VANETs » USA: – Vehicle Safety Communications Consortium (VSCC) – DSRC/WAVE Technology (all info, up to date) (standardization) » Europe: – Car to Car Communication Consortium – PReVENT – CarTalk – Network on Wheels (Germany) » Japan: – ITS Japan
INTRODUCTION Ad-Hoc Network: A network with minimal or no infrastructure It is a temporary network composed of mobile terminals fitted with a relay function. Self-organizing Mobile nodes act as network router mobile nodes provides not only function for information transmission and reception but also function for information relay.
INTRODUCTION What is VANET? It is special form of MANET and it provides Vehicle-to-vehicle communications Vehicle-to-infrastructure communications Uses equipped vehicles as the network nodes Nodes move at will relative to each other but within the constraints of the road infrastructure
VANET
OBJECTIVES VANETs promises safer roads, assures less or no accidents.
More efficient driving By letting the driver know about the traffic.
More fun and entertainment
Smart vehicle
EDR – Used in vehicles to register all important parameters, such as velocity, acceleration, etc. especially during abnormal situations (accidents) Forward radar – Used to detect any forward obstacles as far as 200 meters Positioning System – Used to locate vehicles Accuracy can be improved by knowledge of road topology Computing platform – Inputs from various components are used to generate useful information
Message propagates to destination using a number of intermediate links
If vehicle mobility causes links to break, message rerouted using a different path
Dedicated Short Range Communications (DSRC) DSRC operates at 5.9 GHz
DSRC – Operating Characteristics IEEE p protocol (802.11a modification for VC) Maximum range: 1000 m Vehicle speeds up to 100 mph Low latency: 50 ms Application priority: 8 levels Channel 172: vehicle safety only
How does DSRC work? Road-Side Unit (RSU) Announces to OBUs 10 times per second applications it supports on which channel On-Board Unit (OBU) Listens on Channel 172 Executes safety applications first Then switches channels Executes non-safety applications Returns to Channel 172 and listens
Differences from manet Limited Redundancy The redundancy in MANETs is critical to providing additional bandwidth In VANETs the redundancy is limited both in time and in function Rapid Topology Changes High relative speed of vehicles => short link life large scale – potentially billion
VANET applications Safety alerts Requirement: Bounded latency Primary Issue: Broadcast storm Congestion warning Requirement: Message persistence Primary Issue: Disconnected network Infotainment Requirement: End-to-end connectivity Primary Issue: Disconnection due to high mobility
Application-1 : Congestion Detection Vehicles detect congestion when: # Vehicles > Threshold 1 Speed < Threshold 2 Relay congestion information Hop-by-hop message forwarding Other vehicles can choose alternate routes
Application-2 : Deceleration Warning Prevent pile-ups when a vehicle decelerates rapidly
ADVERSARIES A realistic assessment of the vehicular environment suggests the following classes of adversaries Greedy drivers Snoops. Pranksters. Malicious Attackers.
Attackers Insider or outsider Insider – valid user Outsider – Intruder, limited attack options Malicious or rational Malicious – No personal benefit, intends to harm other users Rational – seeks personal benefits, more predictable attack Active or passive Active: Generates packets, participates in the network Passive: Eavesdrop, track users
attacks Security Attacks
Attacks Basic attacks Bogus information Cheating with sensor information ID disclosure Denial of service Sophisticated attacks Hidden vehicle Tunnel attack
Bogus information attack
Hidden vehicle attack
Tunnel attack
conclusion In VANETs, vehicles are mobile nodes which communicate with each other and also with Road side unit(RSU). Provides many useful applications such as traffic optimization, payment services, location-based services, infotainment. We have analyzed the threat, general classification of attacks, posed on the vehicular networks.
Thank you