1. INTRODUCTION: QD MOLECULES Growth Direction VERTICAL MOLECULES LATERAL MOLECULES e-h+e-h+ 1. Electron states coupling (e - Tunneling ) 2. Hole states.

Slides:



Advertisements
Similar presentations
Tuning eigenstate-energies of InGaAs Quantum-Dots using lateral electric fields W. Prestel, H. Krenner, J. J. Finley St. Petersburg – JASS 2004.
Advertisements

Broadband Telecommunication Technology Interfaculty BTT Master Broadband Telecommunication Technologies
PART IV: EPITAXIAL SEMICONDUCTOR NANOSTRUCTURES  Properties of low-dimensional quantum confined semiconductor nanostructures  Fabrication techniques.
Lorenzo O. Mereni Valeria Dimastrodonato Gediminas Juska Robert J. Young Emanuele Pelucchi Physical properties of highly uniform InGaAs.
Current POLARITON LIGHT EMITTING DEVICES: RELAXATION DYNAMICS Simos Tsintzos Dept of Materials Sci. & Tech Microelectronics Group University of Crete /
Report for China Frontier Workshop (June 22nd 2006 Beijing) Wang Zhanguo Key Lab. of Semiconductor Materials Science, Institute of Semiconductors, Chinese.
J.S. Colton, ODMR of self-assembled InAs QDs Optically-Detected Electron Spin Resonance of Self-Assembled InAs Quantum Dots Talk for APS March Meeting,
Coherence between spin singlet and triplet states in a coupled quantum dot University College London Jeroen Elzerman Kathi Weiss Yves Delley Javier Miguel-Sanchez.
Paul Sellin, Radiation Imaging Group Charge Drift in partially-depleted epitaxial GaAs detectors P.J. Sellin, H. El-Abbassi, S. Rath Department of Physics.
Optical properties of single CdSe/ZnS colloidal QDs on a glass cover slip and gold colloid surface C. T. Yuan, W. C. Chou, Y. N. Chen, D. S. Chuu.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Optically Driven Quantum Dot Based Quantum Computation NSF Workshop on Quantum Information Processing and Nanoscale Systems. Duncan Steel, Univ. Michigan.
Nanomaterials & Nanotechnology
Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes Richard Younger Journal Club Sept. 15, 2005 Antonio Badolato, kevin Hennessy,
(Semi)Automatic Quantification of the Internal Elastic Lamina Fenestrae in Remodeling Arteries A Feasibility Study Master Thesis Harald Groen.
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
Quantum Dot NanoCavity Emission Tuned by a Circular Photonic Crystal Lattice CNR-INFM Lecce (Italy) National Nanotechnology Lab Web:
III. Results and Discussion In scanning laser microscopy, the detected voltage signal  V(x,y) is given by where j b (x,y) is the local current density,
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Quantum Dots. Optical and Photoelectrical properties of QD of III-V Compounds. Alexander Senichev Physics Faculty Department of Solid State Physics
Quantum Dots: Confinement and Applications
Modeling of Energy States of Carriers in Quantum Dots
Electronic Properties of Coupled Quantum Dots
Quantum Dots in Photonic Structures
Time-Correlated Single Photon Counting (TCSPC) Scott Thalman Brigham Young University Advisor: Dr. John Colton Dr Haeyeon Yang USU Physics Help from Mitch.
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
GaAs QUANTUM DOT COM Ray Murray. Why Quantum Dots? Novel “atom-like” electronic structure Immunity to environment Epitaxial growth Well established device.
ITOH Lab. Hiroaki SAWADA
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
 stem electron density ~ 1×10 11 cm -2  Gate Voltage ( Vg ) 0.0 ~ 0.8V  wire electron density 0 ~ 4×10 5 cm -1  arm electron density 0 ~ 1.3×10 11.
Theory of Intersubband Antipolaritons Mauro F
T. Smoleński 1, M. Goryca 1,2, T. Kazimierczuk 1, J. A. Gaj 1, P. Płochocka 2, M. Potemski 2,P. Wojnar 3, P. Kossacki 1,2 1. Institute of Experimental.
M. Ahmad Kamarudin, M. Hayne, R. J. Young, Q. D. Zhuang, T. Ben, and S. I. Molina Tuning the properties of exciton complexes in self- assembled GaSb/GaAs.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Nanowires and Nanorings at the Atomic Level Midori Kawamura, Neelima Paul, Vasily Cherepanov, and Bert Voigtländer Institut für Schichten und Grenzflächen.
Ordered Quantum Wire and Quantum Dot Heterostructures Grown on Patterned Substrates Eli Kapon Laboratory of Physics of Nanostructures Swiss Federal Institute.
A. Imamoglu Department of Electrical and Computer Engineering, and Department of Physics, University of California, Santa Barbara, CA Quantum Dot.
Materials World Network: Understanding & controlling optical excitations in individual hybrid nanostructures Gregory J. Salamo, University of Arkansas,
Quantum Optics with single Nano-Objects. Outline: Introduction : nonlinear optics with single molecule Single Photon sources Photon antibunching in single.
T-shaped quantum-wire laser
Characterizing InGaAs quantum dot chains Tyler Park John Colton Jeff Farrer Ken Clark Jeff Farrer Ken Clark David Meyer Scott Thalman Haeyeon Yang APS.
Itoh Laboratory Masataka Yasuda
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Quantum Dots – a peep in to Synthesis Routes Saurabh Madaan Graduate student, Materials Science and Engineering, University of Pennsylvania.
Gad Bahir – Technion Nanotechnology Workshop Quantum Dots Infrared Photodetectors (QDIPs) Gad Bahir Collaboration: E. Finkman, (Technion) D. Ritter.
Radiation effects in nanostructures: Comparison of proton irradiation induced changes on Quantum Dots and Quantum Wells.* R. Leon and G. M. Swift Jet Propulsion.
Growth and optical properties of II-VI self-assembled quantum dots
MRS, 2008 Fall Meeting Supported by DMR Grant Low-Frequency Noise and Lateral Transport Studies of In 0.35 Ga 0.65 As/GaAs Studies of In 0.35 Ga.
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Substrate dependence of self-assembled quantum dots
Conditional Dynamics of Interacting Quantum Dots Lucio Robledo, Jeroen Elzerman, Gregor Jundt, Mete Atatüre, Alexander Högele, Stefan Fält, Atac Imamoglu.
T-shaped quantum-wire laser M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, T. Ihara, and H. Akiyama Institute for Solid State Physics, Univ. of Tokyo.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Solar Cells based on Quantum Dots: Multiple Exciton Generation
Resonant Zener tunnelling via zero-dimensional states in a narrow gap InAsN diode Davide Maria Di Paola School of Physics and Astronomy The University.
Work package 3: Materials for energy
POSITION OF MRG IN EUROPEAN MICROELECTRONICS
Modeling Vacancy-Interstitial Clusters and Their Effect on Carrier Transport in Silicon E. Žąsinas, J. Vaitkus, E. Gaubas, Vilnius University Institute.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
T1 spin lifetimes in n-doped quantum wells and dots
Project 1.4: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals Saeed Younis.
Self-Assembled Quantum Dot Molecules Studied by AFM
Presentation transcript:

1. INTRODUCTION: QD MOLECULES Growth Direction VERTICAL MOLECULES LATERAL MOLECULES e-h+e-h+ 1. Electron states coupling (e - Tunneling ) 2. Hole states coupling (h + Tunneling ) 3. Excitonic state couplin ( Föster copling (virtual photon))

1. INTRODUCCIÓN: DEL QD AISLADO AL CRISTAL DE QDs E.A. Stinaff et al, Science 311, 636 (2006) H.J. Krenner et al, PRL 94, (2005) C.J. Beirne et al, PRL 96, (2006) VERTICAL MOLECULES LATERAL MOLECULES TUNNING QD STATES WITH ELECTRIC FIELD

2. DROPLET EPITAXY GROWTH: ADVANTAGES : Localized nanostructures. Localized nanostructures. Low density samples. Low density samples. Growth by QD pairs. Growth by QD pairs. P. Alonso-González et al, Crystal Growth and Design 9, 2525 (2009) L.Wang et al, New Journal of Physics 10, (2008)

Density ≈ 2.5 x 10 8 cm -2 Density ≈ 2.5 x 10 8 cm -2 Negative excitonic complex. Negative excitonic complex. Arsenic Vacancies. Arsenic Vacancies. P. Alonso-González et al, APL 91, (2007) HIGH OPTICAL QUALITY 2. DROPLET EPITAXY GROWTH:

3. SAMPLE AND EXP. SET UP: Lateral Molecules InAs Droplets Pairs. InAs Droplets Pairs. Schottky Diode. Schottky Diode. Field on 110 Field on ,5 µm Au-Cr ΔVΔV E (110) GaAs InAs

3. SAMPLE AND EXP. SET-UP: Vertical Molecules. P. Alonso-González et al, APL 93, (2008) First layer: First layer: QDs grown by Droplet Epitaxy QDs grown by Droplet Epitaxy Second layer: Second layer: 4 nm of GaAs Tercera capa: Tercera capa: Self assembled QDs localized on first layer QDs. 1.2 ML 1.4 ML 1.6 ML

3. SAMPLE AND EXP: SET-UP: Vertical Molecules.

3. SAMPLE AND EXP. SET-UP: Confocal Microscope. Laser μ PL Signal

LATERAL MOLECULE RESULTS

4. RESULTS: Lateral Molecules QDs DROPLET PAIRS: Voltage Features. Journal of Physics: Conference Serires 210, (2010) Type I: Isolated Type II: Decoupled pair

4. RESULTS: Lateral Molecules QDs DROPLET PAIRS: Voltage Features. Journal of Physics: Conference Serires 210, (2010) Type III: Coupled pair

4. RESULTS: Lateral Molecules QDs DROPLET PAIRS: Coupling (optical signatures) V = 5.7 V

4. RESULTS: Lateral Molecules QDs DROPLET PAIRS: Coupling Positive Sweep Identified some examples of anticrossing μPL evolution. ZOOM 1ZOOM 2

VERTICAL MOLECULE RESULTS

4. RESULTS: Vertical MoleculesPreliminary Results  -PL QD-AQD-BQD-C  -PL 1.4 ML Ensemble QD Droplet (QD1) + SAQD (QD2)

4. RESULTS: Vertical MoleculesPreliminary results E.A. Stinaff et al, Science 311, 636 (2006) Anomalous stark shifts (Blue y Red Shifts)