Heuristic Local Alignerers 1.The basic indexing & extension technique 2.Indexing: techniques to improve sensitivity Pairs of Words, Patterns 3.Systems.

Slides:



Advertisements
Similar presentations
Pair-HMMs and CRFs Chuong B. Do CS262, Winter 2009 Lecture #8.
Advertisements

Hidden Markov Models (1)  Brief review of discrete time finite Markov Chain  Hidden Markov Model  Examples of HMM in Bioinformatics  Estimations Basic.
Hidden Markov Model.
Rapid Global Alignments How to align genomic sequences in (more or less) linear time.
Bioinformatics Hidden Markov Models. Markov Random Processes n A random sequence has the Markov property if its distribution is determined solely by its.
Hidden Markov Models.
 CpG is a pair of nucleotides C and G, appearing successively, in this order, along one DNA strand.  CpG islands are particular short subsequences in.
Hidden Markov Models Modified from:
Hidden Markov Models Ellen Walker Bioinformatics Hiram College, 2008.
Hidden Markov Models Theory By Johan Walters (SR 2003)
Hidden Markov Model Most pages of the slides are from lecture notes from Prof. Serafim Batzoglou’s course in Stanford: CS 262: Computational Genomics (Winter.
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Seeds for Similarity Search Presentation by: Anastasia Fedynak.
Sequence Alignment.
CpG islands in DNA sequences
Linear-Space Alignment. Subsequences and Substrings Definition A string x’ is a substring of a string x, if x = ux’v for some prefix string u and suffix.
Hidden Markov Models. Two learning scenarios 1.Estimation when the “right answer” is known Examples: GIVEN:a genomic region x = x 1 …x 1,000,000 where.
Hidden Markov Models. Decoding GIVEN x = x 1 x 2 ……x N We want to find  =  1, ……,  N, such that P[ x,  ] is maximized  * = argmax  P[ x,  ] We.
Hidden Markov Models. Two learning scenarios 1.Estimation when the “right answer” is known Examples: GIVEN:a genomic region x = x 1 …x 1,000,000 where.
Hidden Markov Models Lecture 6, Thursday April 17, 2003.
Evolution at the DNA level …ACGGTGCAGTTACCA… …AC----CAGTCCACCA… Mutation SEQUENCE EDITS REARRANGEMENTS Deletion Inversion Translocation Duplication.
CS273a Lecture 8, Win07, Batzoglou Evolution at the DNA level …ACGGTGCAGTTACCA… …AC----CAGTCCACCA… Mutation SEQUENCE EDITS REARRANGEMENTS Deletion Inversion.
Hidden Markov Models Lecture 5, Tuesday April 15, 2003.
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Sequence Alignment. Scoring Function Sequence edits: AGGCCTC  MutationsAGGACTC  InsertionsAGGGCCTC  DeletionsAGG. CTC Scoring Function: Match: +m Mismatch:
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Linear-Space Alignment. Linear-space alignment Using 2 columns of space, we can compute for k = 1…M, F(M/2, k), F r (M/2, N – k) PLUS the backpointers.
Hidden Markov Models Lecture 5, Tuesday April 15, 2003.
Sequence Alignment Cont’d. Needleman-Wunsch with affine gaps Initialization:V(i, 0) = d + (i – 1)  e V(0, j) = d + (j – 1)  e Iteration: V(i, j) = max{
Sequence Alignment.
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Hidden Markov Models K 1 … 2. Outline Hidden Markov Models – Formalism The Three Basic Problems of HMMs Solutions Applications of HMMs for Automatic Speech.
Time Warping Hidden Markov Models Lecture 2, Thursday April 3, 2003.
Index-based search of single sequences Omkar Mate CS 374 Stanford University.
Hidden Markov Models—Variants Conditional Random Fields 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Hidden Markov Models 1 2 K … x1 x2 x3 xK.
Bioinformatics Hidden Markov Models. Markov Random Processes n A random sequence has the Markov property if its distribution is determined solely by its.
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Sequence Alignment Cont’d. Linear-space alignment Iterate this procedure to the left and right! N-k * M/2 k*k*
Hidden Markov Models.
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
CS262 Lecture 4, Win07, Batzoglou Heuristic Local Alignerers 1.The basic indexing & extension technique 2.Indexing: techniques to improve sensitivity Pairs.
Doug Downey, adapted from Bryan Pardo,Northwestern University
Hidden Markov models Sushmita Roy BMI/CS 576 Oct 16 th, 2014.
Sequence Alignment Cont’d. CS262 Lecture 4, Win06, Batzoglou Indexing-based local alignment (BLAST- Basic Local Alignment Search Tool) 1.SEED Construct.
Short Primer on Comparative Genomics Today: Special guest lecture 12pm, Alway M108 Comparative genomics of animals and plants Adam Siepel Assistant Professor.
CS262 Lecture 5, Win07, Batzoglou Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
“Multiple indexes and multiple alignments” Presenting:Siddharth Jonathan Scribing:Susan Tang DFLW:Neda Nategh Upcoming: 10/24:“Evolution of Multidomain.
Sequence Alignment. CS262 Lecture 3, Win06, Batzoglou Sequence Alignment -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC Definition.
Practical algorithms in Sequence Alignment Sushmita Roy BMI/CS 576 Sep 17 th, 2013.
Alignment Statistics and Substitution Matrices BMI/CS 576 Colin Dewey Fall 2010.
BINF6201/8201 Hidden Markov Models for Sequence Analysis
Gapped BLAST and PSI- BLAST: a new generation of protein database search programs By Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui.
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Hidden Markov Models Usman Roshan CS 675 Machine Learning.
PatternHunter II: Highly Sensitive and Fast Homology Search Bioinformatics and Computational Molecular Biology (Fall 2005): Representation R 林語君.
CS5263 Bioinformatics Lecture 10: Markov Chain and Hidden Markov Models.
HMMs for alignments & Sequence pattern discovery I519 Introduction to Bioinformatics.
BLAST: Basic Local Alignment Search Tool Altschul et al. J. Mol Bio CS 466 Saurabh Sinha.
PGM 2003/04 Tirgul 2 Hidden Markov Models. Introduction Hidden Markov Models (HMM) are one of the most common form of probabilistic graphical models,
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Pairwise Local Alignment and Database Search Csc 487/687 Computing for Bioinformatics.
Algorithms in Computational Biology11Department of Mathematics & Computer Science Algorithms in Computational Biology Markov Chains and Hidden Markov Model.
Eric Xing © Eric CMU, Machine Learning Mixture Model, HMM, and Expectation Maximization Eric Xing Lecture 9, August 14, 2010 Reading:
Doug Raiford Phage class: introduction to sequence databases.
Eric Xing © Eric CMU, Machine Learning Structured Models: Hidden Markov Models versus Conditional Random Fields Eric Xing Lecture 13,
More on HMMs and Multiple Sequence Alignment BMI/CS 776 Mark Craven March 2002.
Hidden Markov Models – Concepts 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
CSCI2950-C Lecture 2 September 11, Comparative Genomic Hybridization (CGH) Measuring Mutations in Cancer.
Hidden Markov Model ..
Presentation transcript:

Heuristic Local Alignerers 1.The basic indexing & extension technique 2.Indexing: techniques to improve sensitivity Pairs of Words, Patterns 3.Systems for local alignment

Indexing-based local alignment Dictionary: All words of length k (~10) Alignment initiated between words of alignment score  T (typically T = k) Alignment: Ungapped extensions until score below statistical threshold Output: All local alignments with score > statistical threshold …… query DB query scan

Indexing-based local alignment— Extensions A C G A A G T A A G G T C C A G T C T G A T C C T G G A T T G C G A Gapped extensions until threshold Extensions with gaps until score < C below best score so far Output: GTAAGGTCCAGT GTTAGGTC-AGT

Sensitivity-Speed Tradeoff long words (k = 15) short words (k = 7) Sensitivity Speed Kent WJ, Genome Research 2002 Sens. Speed X%

Sensitivity-Speed Tradeoff Methods to improve sensitivity/speed 1.Using pairs of words 2.Using inexact words 3.Patterns—non consecutive positions ……ATAACGGACGACTGATTACACTGATTCTTAC…… ……GGCACGGACCAGTGACTACTCTGATTCCCAG…… ……ATAACGGACGACTGATTACACTGATTCTTAC…… ……GGCGCCGACGAGTGATTACACAGATTGCCAG…… TTTGATTACACAGAT T G TT CAC G

Measured improvement Kent WJ, Genome Research 2002

Non-consecutive words—Patterns Patterns increase the likelihood of at least one match within a long conserved region 3 common 5 common 7 common Consecutive PositionsNon-Consecutive Positions 6 common On a 100-long 70% conserved region: Consecutive Non-consecutive Expected # hits: Prob[at least one hit]:

Advantage of Patterns 11 positions 10 positions

Multiple patterns K patterns  Takes K times longer to scan  Patterns can complement one another Computational problem:  Given: a model (prob distribution) for homology between two regions  Find: best set of K patterns that maximizes Prob(at least one match) TTTGATTACACAGAT T G TT CAC G T G T C CAG TTGATT A G Buhler et al. RECOMB 2003 Sun & Buhler RECOMB 2004 How long does it take to search the query?

Variants of BLAST NCBI BLAST: search the universe MEGABLAST:  Optimized to align very similar sequences Works best when k = 4i  16 Linear gap penalty WU-BLAST: (Wash U BLAST)  Very good optimizations  Good set of features & command line arguments BLAT  Faster, less sensitive than BLAST  Good for aligning huge numbers of queries CHAOS  Uses inexact k-mers, sensitive PatternHunter  Uses patterns instead of k-mers BlastZ  Uses patterns, good for finding genes Typhon  Uses multiple alignments to improve sensitivity/speed tradeoff

Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2

Outline for our next topic Hidden Markov models – the theory Probabilistic interpretation of alignments using HMMs Later in the course: Applications of HMMs to biological sequence modeling and discovery of features such as genes

Example: The Dishonest Casino A casino has two dice: Fair die P(1) = P(2) = P(3) = P(5) = P(6) = 1/6 Loaded die P(1) = P(2) = P(3) = P(5) = 1/10 P(6) = 1/2 Casino player switches back-&-forth between fair and loaded die once every 20 turns Game: 1.You bet $1 2.You roll (always with a fair die) 3.Casino player rolls (maybe with fair die, maybe with loaded die) 4.Highest number wins $2

Question # 1 – Evaluation GIVEN A sequence of rolls by the casino player QUESTION How likely is this sequence, given our model of how the casino works? This is the EVALUATION problem in HMMs Prob = 1.3 x

Question # 2 – Decoding GIVEN A sequence of rolls by the casino player QUESTION What portion of the sequence was generated with the fair die, and what portion with the loaded die? This is the DECODING question in HMMs FAIRLOADEDFAIR

Question # 3 – Learning GIVEN A sequence of rolls by the casino player QUESTION How “loaded” is the loaded die? How “fair” is the fair die? How often does the casino player change from fair to loaded, and back? This is the LEARNING question in HMMs Prob(6) = 64%

The dishonest casino model FAIRLOADED P(1|F) = 1/6 P(2|F) = 1/6 P(3|F) = 1/6 P(4|F) = 1/6 P(5|F) = 1/6 P(6|F) = 1/6 P(1|L) = 1/10 P(2|L) = 1/10 P(3|L) = 1/10 P(4|L) = 1/10 P(5|L) = 1/10 P(6|L) = 1/2

The dishonest casino model FAIRLOADED P(1|F) = 1/6 P(2|F) = 1/6 P(3|F) = 1/6 P(4|F) = 1/6 P(5|F) = 1/6 P(6|F) = 1/6 P(1|L) = 1/10 P(2|L) = 1/10 P(3|L) = 1/10 P(4|L) = 1/10 P(5|L) = 1/10 P(6|L) = 1/2

A HMM is memory-less At each time step t, the only thing that affects future states is the current state  t K 1 … 2

Definition of a hidden Markov model Definition: A hidden Markov model (HMM) Alphabet  = { b 1, b 2, …, b M } Set of states Q = { 1,..., K } Transition probabilities between any two states a ij = transition prob from state i to state j a i1 + … + a iK = 1, for all states i = 1…K Start probabilities a 0i a 01 + … + a 0K = 1 Emission probabilities within each state e i (b) = P( x i = b |  i = k) e i (b 1 ) + … + e i (b M ) = 1, for all states i = 1…K K 1 … 2 End Probabilities a i0 in Durbin; not needed

A HMM is memory-less At each time step t, the only thing that affects future states is the current state  t P(  t+1 = k | “whatever happened so far”) = P(  t+1 = k |  1,  2, …,  t, x 1, x 2, …, x t )= P(  t+1 = k |  t ) K 1 … 2

A HMM is memory-less At each time step t, the only thing that affects x t is the current state  t P(x t = b | “whatever happened so far”) = P(x t = b |  1,  2, …,  t, x 1, x 2, …, x t-1 )= P(x t = b |  t ) K 1 … 2

A parse of a sequence Given a sequence x = x 1 ……x N, A parse of x is a sequence of states  =  1, ……,  N 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2

Generating a sequence by the model Given a HMM, we can generate a sequence of length n as follows: 1.Start at state  1 according to prob a 0  1 2.Emit letter x 1 according to prob e  1 (x 1 ) 3.Go to state  2 according to prob a  1  2 4.… until emitting x n 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xnxn 2 1 K 2 0 e 2 (x 1 ) a 02

Likelihood of a parse Given a sequence x = x 1 ……x N and a parse  =  1, ……,  N, To find how likely this scenario is: (given our HMM) P(x,  ) = P(x 1, …, x N,  1, ……,  N ) = P(x N |  N ) P(  N |  N-1 ) ……P(x 2 |  2 ) P(  2 |  1 ) P(x 1 |  1 ) P(  1 ) = a 0  1 a  1  2 ……a  N-1  N e  1 (x 1 )……e  N (x N ) 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2 A compact way to write a 0  1 a  1  2 ……a  N-1  N e  1 (x 1 )……e  N (x N ) Enumerate all parameters a ij and e i (b); n params Example: a 0Fair :  1 ; a 0Loaded :  2 ; … e Loaded (6) =  18 Then, count in x and  the # of times each parameter j = 1, …, n occurs F(j, x,  ) = # parameter  j occurs in (x,  ) (call F(.,.,.) the feature counts) Then, P(x,  ) =  j=1…n  j F(j, x,  ) = = exp [  j=1…n log(  j )  F(j, x,  ) ]

Example: the dishonest casino Let the sequence of rolls be: x = 1, 2, 1, 5, 6, 2, 1, 5, 2, 4 Then, what is the likelihood of  = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair? (say initial probs a 0Fair = ½, a oLoaded = ½) ½  P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) = ½  (1/6) 10  (0.95) 9 = ~= 0.5  10 -9

Example: the dishonest casino So, the likelihood the die is fair in this run is just  What is the likelihood of  = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded? ½  P(1 | Loaded) P(Loaded, Loaded) … P(4 | Loaded) = ½  (1/10) 9  (1/2) 1 (0.95) 9 = ~= 0.16  Therefore, it somewhat more likely that all the rolls are done with the fair die, than that they are all done with the loaded die

Example: the dishonest casino Let the sequence of rolls be: x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6 Now, what is the likelihood  = F, F, …, F? ½  (1/6) 10  (0.95) 9 ~= 0.5  10 -9, same as before What is the likelihood  = L, L, …, L? ½  (1/10) 4  (1/2) 6 (0.95) 9 = ~= 0.5  So, it is 100 times more likely the die is loaded

Question # 1 – Evaluation GIVEN A sequence of rolls by the casino player QUESTION How likely is this sequence, given our model of how the casino works? This is the EVALUATION problem in HMMs Prob = 1.3 x

Question # 2 – Decoding GIVEN A sequence of rolls by the casino player QUESTION What portion of the sequence was generated with the fair die, and what portion with the loaded die? This is the DECODING question in HMMs FAIRLOADEDFAIR

Question # 3 – Learning GIVEN A sequence of rolls by the casino player QUESTION How “loaded” is the loaded die? How “fair” is the fair die? How often does the casino player change from fair to loaded, and back? This is the LEARNING question in HMMs Prob(6) = 64%

The three main questions on HMMs 1.Evaluation GIVEN a HMM M, and a sequence x, FIND Prob[ x | M ] 2.Decoding GIVENa HMM M, and a sequence x, FINDthe sequence  of states that maximizes P[ x,  | M ] 3.Learning GIVENa HMM M, with unspecified transition/emission probs., and a sequence x, FINDparameters  = (e i (.), a ij ) that maximize P[ x |  ]