1 ESE534: Computer Organization Day 16: March 24, 2010 Component-Specific Mapping Penn ESE534 Spring2010 – DeHon, Gojman, Rubin.

Slides:



Advertisements
Similar presentations
NanoFabric Chang Seok Bae. nanoFabric nanoFabric : an array of connect nanoBlocks nanoBlock : logic block that can be progammed to implement Boolean function.
Advertisements

Cadence Design Systems, Inc. Why Interconnect Prediction Doesn’t Work.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 14: March 19, 2014 Compute 2: Cascades, ALUs, PLAs.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 23: April 10, 2013 Statistical Static Timing Analysis.
Defect Tolerance for Yield Enhancement of FPGA Interconnect Using Fine-grain and Coarse-grain Redundancy Anthony J. Yu August 15, 2005.
Defect Tolerance for Yield Enhancement of FPGA Interconnect Using Fine-grain and Coarse-grain Redundancy Anthony J. Yu August 15, 2005.
Balancing Interconnect and Computation in a Reconfigurable Array Dr. André DeHon BRASS Project University of California at Berkeley Why you don’t really.
Caltech CS184a Fall DeHon1 CS184a: Computer Architecture (Structures and Organization) Day17: November 20, 2000 Time Multiplexing.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 21: April 2, 2007 Time Multiplexing.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 23: April 22, 2009 Statistical Static Timing Analysis.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 15: March 12, 2007 Interconnect 3: Richness.
Caltech CS184a Fall DeHon1 CS184a: Computer Architecture (Structures and Organization) Day10: October 25, 2000 Computing Elements 2: Cascades, ALUs,
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 14: March 19, 2008 Statistical Static Timing Analysis.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 2: January 23, 2008 Covering.
Caltech CS184a Fall DeHon1 CS184a: Computer Architecture (Structures and Organization) Day8: October 18, 2000 Computing Elements 1: LUTs.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 9: February 7, 2007 Instruction Space Modeling.
DeHon March 2001 Rent’s Rule Based Switching Requirements Prof. André DeHon California Institute of Technology.
Penn ESE Fall DeHon 1 ESE (ESE534): Computer Organization Day 19: March 26, 2007 Retime 1: Transformations.
NanoPLA Overview Yao Guo Oct 6, Semiconducting Nanowires Few nm’s in diameter (e.g. 3nm) –Diameter controlled by seed catalyst Can be microns long.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 13: February 26, 2007 Interconnect 1: Requirements.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 26: April 18, 2007 Et Cetera…
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 11: February 14, 2007 Compute 1: LUTs.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 19: April 9, 2008 Routing 1.
Array-Based Architecture for FET-Based, Nanoscale Electronics André DeHon 2003 Presented By Mahmoud Ben Naser.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 4: January 22, 2007 Memories.
CS294-6 Reconfigurable Computing Day 2 August 27, 1998 FPGA Introduction.
FPGA Defect Tolerance: Impact of Granularity Anthony YuGuy Lemieux December 14, 2005.
Penn ESE Spring DeHon 1 FUTURE Timing seemed good However, only student to give feedback marked confusing (2 of 5 on clarity) and too fast.
NanoPLAs Mike Gregoire. Overview ► Similar to CMOS PLA (Programmable Logic Array) ► Uses NOR-NOR logic to implement any logical function ► Like other.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 12: February 21, 2007 Compute 2: Cascades, ALUs, PLAs.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 11: October 1, 2010 Variation.
FEC DeHon Nanowire-Based Computing Systems André DeHon In collaboration with Helia Naeimi, Michael Wilson, Charles Lieber,
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 15: February 12, 2003 Interconnect 5: Meshes.
ESE Spring DeHon 1 ESE534: Computer Organization Day 19: April 7, 2014 Interconnect 5: Meshes.
Power Reduction for FPGA using Multiple Vdd/Vth
EGRE 427 Advanced Digital Design Figures from Application-Specific Integrated Circuits, Michael John Sebastian Smith, Addison Wesley, 1997 Chapter 4 Programmable.
UT Oct DeHon Sub-lithographic Semiconductor Computing Systems André DeHon In collaboration with Helia Naeimi, Michael Wilson,
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 9: February 24, 2014 Operator Sharing, Virtualization, Programmable Architectures.
Modern VLSI Design 3e: Chapters 1-3 week12-1 Lecture 30 Scale and Yield Mar. 24, 2003.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 2: January 21, 2015 Heterogeneous Multicontext Computing Array Work Preclass.
CBSSS 2002: DeHon Costs André DeHon Wednesday, June 19, 2002.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 7: February 6, 2012 Memories.
Penn ESE370 Fall Townley & DeHon ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: October 5, 2011 Layout and.
Field Programmable Gate Arrays (FPGAs) An Enabling Technology.
Impact of Interconnect Architecture on VPSAs (Via-Programmed Structured ASICs) Usman Ahmed Guy Lemieux Steve Wilton System-on-Chip Lab University of British.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 24: April 18, 2011 Covering and Retiming.
CALTECH CS137 Winter DeHon CS137: Electronic Design Automation Day 8: February 4, 2004 Fault Detection.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 26: October 31, 2014 Synchronous Circuits.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 24: April 22, 2015 Statistical Static Timing Analysis.
Topics Architecture of FPGA: Logic elements. Interconnect. Pins.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 18: April 2, 2014 Interconnect 4: Switching.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 5: February 1, 2010 Memories.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 6: September 10, 2014 Restoration.
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 13: February 6, 2003 Interconnect 3: Richness.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 6: September 19, 2011 Restoration.
Penn ESE534 Spring DeHon 1 ESE534 Computer Organization Day 19: March 28, 2012 Minimizing Energy.
Penn ESE534 Spring DeHon 1 ESE534 Computer Organization Day 9: February 13, 2012 Interconnect Introduction.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: October 3, 2011 Variation.
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 11: January 31, 2005 Compute 1: LUTs.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 15: March 13, 2013 High Level Synthesis II Dataflow Graph Sharing.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 8: February 19, 2014 Memories.
A Survey of Fault Tolerant Methodologies for FPGA’s Gökhan Kabukcu
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 25: April 17, 2013 Covering and Retiming.
ESE534: Computer Organization
ESE534 Computer Organization
ESE534: Computer Organization
ESE534: Computer Organization
CS184a: Computer Architecture (Structures and Organization)
ESE534: Computer Organization
A New Hybrid FPGA with Nanoscale Clusters and CMOS Routing Reza M. P
Presentation transcript:

1 ESE534: Computer Organization Day 16: March 24, 2010 Component-Specific Mapping Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

2 Previously Increasing variation with scaling (Day 8) Row sparing in memories (Day 12, HW6) Disk-drive model for mapping out defects in software (Day 12) PLAs for logic (last time) LUTs + Interconnect (Day 14) Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

3 Today Defect and Variation Tolerance for Compute and Interconnect High defect rates and extreme variation Nanoscale chips are like snowflakes  Each one is unique. Application mapping tailored to the component Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Agenda nanoPLA –Introduction –Tolerating crosspoint defects –Tolerating extreme V th variation FPGA –Tolerating defects –Lightweight, load-time defect avoidance 4 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

nanoPLA Architecture 5 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Plane Smallest unit of computation Built Bottom-Up from nanowires Diode-Programmable region –Memory cell area == Wire crossing area – Molecular – Amorphous Si Stochastic FET restore region Core-shell nanowires with doped region Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Block Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

8 NanoPLA Block Logically same behavior as PLA Selectively invert input. And Plane Or Plane Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Block Circuit Diagram Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Block Circuit Diagram Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Block Circuit Diagram Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Block Circuit Diagram Invert Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Block Circuit Diagram Invert Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Block Circuit Diagram Invert OR Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Block Circuit Diagram NAND-Term Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA ● Tiled programmable logic blocks ● Manhattan routing ● Through blocks ● No separate switching network ● Nanoscale-density ● Compute ● Interconnect Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

nanoPLA Tolerating non-Programmable Crosspoint 18 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Crosspoint Defects Crosspoint junctions may be nonprogrammable –E.g. the first 8x8 from Hewlett-Packard had 85% programmable crosspoints Preclass: –100 junctions –5% stuck-open rate –P xpoint =0.95 –P row ? Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Crosspoint Defects Using P row just calculated. How many perfect wires can we expect (on average) in an array of 100 wires? How will row sparing work here? What kind of overhead would row sparing require? Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Idea 1: Don’t need all junctions F=a+b+e Can use wire w 4 Even though has missing crosspoints Preclass 2: –F require 3 good crosspoints –P good ? Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

F=a+b+e Cannot use w 2 Can use any of the rest Probability of at least one match is very high Preclass 3 –Use P good from Preclass 2 –P(1 of 5)=? Idea 2: Have many wires to choose from Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Mapping Entire Array Need to map all 100 functions Assuming P 1-of-5 from previous, what’s the probability can find a match for all 100? In practice have 100 to choose from not 5 What can we do if cannot find a match? 23 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Crosspoint Defects Tolerate by matching nanowire junction programmability with pterm needs Design and Test of Computers, July-August 2005 Naeimi/DeHon, FPT2004 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Crosspoint Defect Rate Impact Toronto20 benchmark circuits –Typical 10k “gate” logic designs Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Matching Lesson Can use almost all wires 5% defects, need no extra wires …despite the fact that almost all wires are imperfect –P row from preclass 1 Trick is to figure out where an imperfect wire is “good enough” 26 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

nanoPLA Tolerating Extreme V th Variation 27 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Challenge High variation of V th means some devices leak faster than others evaluate! 28 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Preclass 4 Sampling nanowires from a distribution What range of nanowire V th ’s must we tolerate? 4c: In array of 100 nanowires, what is the probability that there is one nanowire n  above mean and one n  below? –  = 1? –  = 2? –  = 3? 29 From: Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Preclass Problem 4d: How many  out should we expect in a collection of 100 arrays? Problem 5: –I(Von,V th =V th +n  –I(Voff,V th =V th -n  What is  /V th given in example? 30 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Challenge High variation of V th means some devices leak faster than others evaluate! 31 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Physical Variation ● Predominantly Random Variation ● Due to Bottom-up manufacturing process ● Variation in: ● Dopant fluctuations ● NanoWire alignment ● NanoWire dimensions ● Number of state-holding elements / junction ● Variation in V th, R and C ● Independent Gaussian distributions Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

NanoPLA Defect Model Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Defect Model Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Defect Model  Switch Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Defect Model  Switch  Leak Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Defect Model  Switch  Leak Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Defect Model  Switch  Leak Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Defect Model  Switch  Leak Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Defect Model Operating Region  Switch  Leak Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

 Switch of one NAND-term >  Leak of another NAND-term 100·Max(  Switch ) ≤ Min(  Leak )  Target To keep leakage power low, demand two orders of magnitude separation Defect Model Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Variation-Oblivious Mapping Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Variation-Oblivious Mapping Perform Detailed Mapping Oblivious to the Characteristics of the underlying Resources. ll Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Variation-Oblivious Mapping SPLA at 38% Variation Perform Detailed Mapping Oblivious to the Characteristics of the underlying Resources. ll Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Variation-Oblivious Mapping Defective Mapping: 100·Max(  Switch) ≤ Min(  Leak) not met SPLA at 38% Variation Perform Detailed Mapping Oblivious to the Characteristics of the underlying Resources. ll Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Timing Model  Switch ≈  Leak ≈ Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Timing Model  Switch ≈ R on  Leak ≈ R off Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Timing Model  Switch ≈ R on ∙ Σ Fanout (Cout)  Leak ≈ R off ∙ Σ Fanout (Cout) Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Timing Model  Switch ≈ R on ∙ Σ Fanout (Cout)  Leak ≈ R off ∙ Σ Fanout (Cout) Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Timing Model  Switch ≈ R on ∙ Σ Fanout (Cout)  Leak ≈ R off ∙ Σ Fanout (Cout) Vdd Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Timing Model  Switch ≈ R on ∙ Σ Fanout (Cout)  Leak ≈ R off ∙ Σ Fanout (Cout) 0 Vdd Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Timing Model  Switch ≈ R on ∙ Σ Fanout (Cout)  Leak ≈ R off ∙ Σ Fanout (Cout) 0 Vdd Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Primary Source of Variation Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Primary Source of Variation Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Primary Source of Variation Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Primary Source of Variation Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Primary Source of Variation V th Variation Linear Change in R on Exponential Change in R off Roff variation dominates all other physical variation Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Preventing Overlap -How to avoid overlap problem? -Mark leakiest defective -Perform Variation Oblivious mapping Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Defect-Avoiding Algorithm -Mark leakiest resources as defective -Perform Variation-Oblivious mapping on remaining resources SPLA at 38% Variation Works but discards 48% of resources, 167% wider channels leading to high delay, energy and area Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Logical Variation: Variation in Fanout  Leak ≈ R off ∙ Σ Fanout (Cout) Fanout comes from netlist Map: AB+ACD+BE+AF Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Logical Variation: Variation in Fanout A has fanout 3: AB, ACD,AF F has fanout 1: AF Even at nominal, A sees 3 times more load than F  Leak ≈ R off ∙ Σ Fanout (Cout) Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Logical Variation: Variation in Fanout Typical Fanout Distribution Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Defect-Avoiding Toy Example Logical FanoutR off Resistance Step 1 Discard Leaky Resources Estimated  Leak Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Defect-Avoiding Toy Example Logical FanoutR off Resistance Step 2 Match Functions to Resources Estimated  Leak Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

VMATCH Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

VMATCH ● Logical Variation + Physical Variation >> Variation ● Variation-Aware Mapping Algorithm ● Uses logical variation (fanout variation) to counteract physical variation (Roff variation) ● Matches high-fanout term with low Roff NAND-Term and vice versa. Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

VMATCH Toy Example Logical FanoutR off Resistance Step 1 Sort

Penn ESE534 Spring2010 – DeHon, Gojman, Rubin VMATCH Toy Example Logical FanoutR off Resistance Step 2 Match High Fanout with Low R off Estimated  Leak

VMATCH Results SPLA at 38% Variation Only requires 3% extra resources Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Experiments ● Simulated NanoPLA using 5nm pitch wires, 5nm transistor channel length ● Modeled variation up to ITRS predicted 38% for technology ● Implemented Variation-Oblivious, Defect- Avoiding and VMATCH Algorithms on NPR ● Routed Toronto 20 Benchmark on 100 Monte Carlo generated chips. 5nm Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Achievable Yield ● Maximum variation that achieves 100% yield SPLA on 100 Chips Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Achievable Yield ● Maximum variation that achieves 100% yield SPLA on 100 Chips Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Achievable Yield ● Maximum variation that achieves 100% yield SPLA on 100 Chips Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Achievable Yield ● Maximum variation that achieves 100% yield SPLA on 100 Chips Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Achievable Yield ● Maximum variation that achieves 100% yield SPLA on 100 Chips Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Achievable Yield ● Maximum variation that achieves 100% yield SPLA on 100 Chips Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Achievable Yield ● Maximum variation that achieves 100% yield SPLA on 100 Chips Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Matching Lesson 2 Can keep yield high 38% variation, small amount of extra wires …despite the fact that Roff varies over 12 orders of magnitude Trick is to match the logical variation to the physical variation to reduce both 78 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

FPGA Defects Full Knowledge 79 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

80 Problem At high defect rates, some resources will be unusable Resources –LUTs –FFs –Interconnection links Full crossbars are too expensive Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Opportunity Avoid defective elements during mapping –Don’t place logic in defective LUT Like disk-drive model where we don’t allocate a defective sector to hold data –Route to avoid defective interconnect 81 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

82 Avoid Defective LUT [Lach et al. / FPGA 1998] x x x x Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Avoid Defective Interconnect 83 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Example Collect 4 numbers between 1 and Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Defects on Mesh Draw on board for mapping on next slide. 85 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Class Exercise Map this circuit to the defective LUT mesh, avoiding defects. 86 Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

Full Knowledge Interconnect Defect Tolerance Penn ESE534 Spring DeHon 87

FPGA Routing Defects Pre-computed Alternatives Lightweight Defect Tolerance Choose Your own Adventure Penn ESE534 Spring DeHon 88

Penn ESE534 Spring DeHon Traditional Bitstream

Penn ESE534 Spring DeHon Full Knowledge

Penn ESE534 Spring DeHon Choose Your own Adventure Bitstream with alternatives –Still just one bitstream

Penn ESE534 Spring DeHon Choose Your own Adventure Bitstream with alternatives –Still just one bitstream

Penn ESE534 Spring DeHon Loading Examine path –Configure –Test Good: skip to next net Bad: grab next path

Penn ESE534 Spring DeHon Loading Examine path –Configure –Test Good: skip to next net Bad: grab next path

Penn ESE534 Spring DeHon Loading Examine path –Configure –Test Good: skip to next net Bad: grab next path

Penn ESE534 Spring DeHon Loading Examine path –Configure –Test Good: skip to next net Bad: grab next path

Penn ESE534 Spring DeHon Loading Examine path –Configure –Test Good: skip to next net Bad: grab next path

Penn ESE534 Spring DeHon Loading Examine path –Configure –Test Good: skip to next net Bad: grab next path

Penn ESE534 Spring DeHon Loading Examine path –Configure –Test Good: skip to next net Bad: grab next path

Penn ESE534 Spring DeHon Primary Routing Mask extra resources for later Normal routing

Penn ESE534 Spring DeHon Prepare for Alternatives Mask used resources

Penn ESE534 Spring DeHon Generate Bitstream Favorite shortest path search

Penn ESE534 Spring DeHon

106 Admin Homework 7 due Monday No office hours today (André away) Reading for Monday on web –Classic paper on Rent’s Rule Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

107 Big Ideas [MSB Ideas] Nanoscale Integrated Circuits are like snowflakes – each unique Cannot expect perfect ICs –…or even perfect building blocks But even defective components are often “good enough” Post-fabrication matching allows us to assign functions based on capabilities Penn ESE534 Spring2010 – DeHon, Gojman, Rubin

108 Big Ideas [MSB-1 Ideas] Matching in nanoPLA 5% crosspoint non-programmable defects  =38% variation in V th Defect-aware routing in FPGAs 10% switch and segment defects with full knowledge 1% with pre-computed alternatives Penn ESE534 Spring2010 – DeHon, Gojman, Rubin