Graph Sparsifiers by Edge-Connectivity and Random Spanning Trees Nick Harvey U. Waterloo C&O Joint work with Isaac Fung TexPoint fonts used in EMF. Read.

Slides:



Advertisements
Similar presentations
The Primal-Dual Method: Steiner Forest TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A AA A A A AA A A.
Advertisements

Weighted Matching-Algorithms, Hamiltonian Cycles and TSP
Vertex sparsifiers: New results from old techniques (and some open questions) Robert Krauthgamer (Weizmann Institute) Joint work with Matthias Englert,
Matroid Bases and Matrix Concentration
C&O 355 Lecture 23 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
Solving Laplacian Systems: Some Contributions from Theoretical Computer Science Nick Harvey UBC Department of Computer Science.
C&O 355 Mathematical Programming Fall 2010 Lecture 22 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
The Combinatorial Multigrid Solver Yiannis Koutis, Gary Miller Carnegie Mellon University TexPoint fonts used in EMF. Read the TexPoint manual before you.
Degree-3 Treewidth Sparsifiers Chandra Chekuri Julia Chuzhoy Univ. of IllinoisTTI Chicago.
C&O 355 Mathematical Programming Fall 2010 Lecture 21 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
Online Social Networks and Media. Graph partitioning The general problem – Input: a graph G=(V,E) edge (u,v) denotes similarity between u and v weighted.
Dependent Randomized Rounding in Matroid Polytopes (& Related Results) Chandra Chekuri Jan VondrakRico Zenklusen Univ. of Illinois IBM ResearchMIT.
1 The Monte Carlo method. 2 (0,0) (1,1) (-1,-1) (-1,1) (1,-1) 1 Z= 1 If  X 2 +Y 2  1 0 o/w (X,Y) is a point chosen uniformly at random in a 2  2 square.
Combinatorial Algorithms
A Randomized Linear-Time Algorithm to Find Minimum Spanning Trees David R. Karger David R. Karger Philip N. Klein Philip N. Klein Robert E. Tarjan.
Graph Sparsifiers by Edge-Connectivity and Random Spanning Trees Nick Harvey U. Waterloo Department of Combinatorics and Optimization Joint work with Isaac.
Learning Submodular Functions Nick Harvey, Waterloo C&O Joint work with Nina Balcan, Georgia Tech.
Graph Sparsifiers: A Survey Nick Harvey Based on work by: Batson, Benczur, de Carli Silva, Fung, Hariharan, Harvey, Karger, Panigrahi, Sato, Spielman,
Graph Sparsifiers: A Survey Nick Harvey UBC Based on work by: Batson, Benczur, de Carli Silva, Fung, Hariharan, Harvey, Karger, Panigrahi, Sato, Spielman,
Graph Sparsifiers by Edge-Connectivity and Random Spanning Trees Nick Harvey University of Waterloo Department of Combinatorics and Optimization Joint.
Approximation Algorithm: Iterative Rounding Lecture 15: March 9.
Greedy Algorithms Reading Material: Chapter 8 (Except Section 8.5)
An Approximation Algorithm for Requirement cut on graphs Viswanath Nagarajan Joint work with R. Ravi.
On the Crossing Spanning Tree Vineet Goyal Joint work with Vittorio Bilo, R. Ravi and Mohit Singh.
1 On the Benefits of Adaptivity in Property Testing of Dense Graphs Joint work with Mira Gonen Dana Ron Tel-Aviv University.
1 Separator Theorems for Planar Graphs Presented by Shira Zucker.
Greedy Algorithms Like dynamic programming algorithms, greedy algorithms are usually designed to solve optimization problems Unlike dynamic programming.
Randomness in Computation and Communication Part 1: Randomized algorithms Lap Chi Lau CSE CUHK.
Packing Element-Disjoint Steiner Trees Mohammad R. Salavatipour Department of Computing Science University of Alberta Joint with Joseph Cheriyan Department.
Approximation Algorithms: Bristol Summer School 2008 Seffi Naor Computer Science Dept. Technion Haifa, Israel TexPoint fonts used in EMF. Read the TexPoint.
cover times, blanket times, and majorizing measures Jian Ding U. C. Berkeley James R. Lee University of Washington Yuval Peres Microsoft Research TexPoint.
Approximating the MST Weight in Sublinear Time Bernard Chazelle (Princeton) Ronitt Rubinfeld (NEC) Luca Trevisan (U.C. Berkeley)
Minimal Spanning Trees What is a minimal spanning tree (MST) and how to find one.
Graph Sparsifiers Nick Harvey University of British Columbia Based on joint work with Isaac Fung, and independent work of Ramesh Hariharan & Debmalya Panigrahi.
The Best Algorithms are Randomized Algorithms N. Harvey C&O Dept TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AAAA.
C&O 750 Randomized Algorithms Winter 2011 Lecture 24 Nicholas Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
Approximating Submodular Functions Part 2 Nick Harvey University of British Columbia Department of Computer Science July 12 th, 2015 Joint work with Nina.
Edge-disjoint induced subgraphs with given minimum degree Raphael Yuster 2012.
Expanders via Random Spanning Trees R 許榮財 R 黃佳婷 R 黃怡嘉.
Graph Sparsifiers Nick Harvey Joint work with Isaac Fung TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 18 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
Spanning and Sparsifying Rajmohan Rajaraman Northeastern University, Boston May 2012 Chennai Network Optimization WorkshopSpanning and Sparsifying1.
Spectrally Thin Trees Nick Harvey University of British Columbia Joint work with Neil Olver (MIT  Vrije Universiteit) TexPoint fonts used in EMF. Read.
CSM Workshop 1: Zeros of Graph Polynomials Enumeration of Spanning Subgraphs with Degree Constraints Dave Wagner University of Waterloo.
Testing the independence number of hypergraphs
CPSC 536N Sparse Approximations Winter 2013 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA.
Artur Czumaj DIMAP DIMAP (Centre for Discrete Maths and it Applications) Computer Science & Department of Computer Science University of Warwick Testing.
Graph Partitioning using Single Commodity Flows
Graphs, Vectors, and Matrices Daniel A. Spielman Yale University AMS Josiah Willard Gibbs Lecture January 6, 2016.
Estimating PageRank on Graph Streams Atish Das Sarma (Georgia Tech) Sreenivas Gollapudi, Rina Panigrahy (Microsoft Research)
Sampling in Graphs Alexandr Andoni (Microsoft Research)
Theory of Computing Lecture 12 MAS 714 Hartmut Klauck.
C&O 355 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
Sketching complexity of graph cuts Alexandr Andoni joint work with: Robi Krauthgamer, David Woodruff.
Generating Random Spanning Trees via Fast Matrix Multiplication Keyulu Xu University of British Columbia Joint work with Nick Harvey TexPoint fonts used.
The Best Algorithms are Randomized Algorithms
Randomized Min-Cut Algorithm
Resparsification of Graphs
Approximating the MST Weight in Sublinear Time
June 2017 High Density Clusters.
Density Independent Algorithms for Sparsifying
Complexity of Expander-Based Reasoning and the Power of Monotone Proofs Sam Buss (UCSD), Valentine Kabanets (SFU), Antonina Kolokolova.
Framework for the Secretary Problem on the Intersection of Matroids
CIS 700: “algorithms for Big Data”
Matrix Martingales in Randomized Numerical Linear Algebra
Chapter 23 Minimum Spanning Tree
CSCI B609: “Foundations of Data Science”
Sampling in Graphs: node sparsifiers
On Solving Linear Systems in Sublinear Time
Presentation transcript:

Graph Sparsifiers by Edge-Connectivity and Random Spanning Trees Nick Harvey U. Waterloo C&O Joint work with Isaac Fung TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A

What are sparsifiers? Approximating all cuts – Sparsifiers: number of edges = O(n log n / ² 2 ), every cut approximated within 1+ ². [BK’96] – O~(m) time algorithm to construct them Spectral approximation – Spectral sparsifiers: number of edges = O(n log n / ² 2 ), “entire spectrum” approximated within 1+ ². [SS’08] – O~(m) time algorithm to construct them [BSS’09] Poly(n) n = # vertices Laplacian matrix of G Laplacian matrix of Sparsifier Weighted subgraphs that approximately preserve some properties m = # edges Poly(n) [BSS’09]

Why are sparsifiers useful? Approximating all cuts – Sparsifiers: fast algorithms for cut/flow problem ProblemApproximationRuntimeReference Min st Cut1+ ² O~(n 2 )BK’96 Sparsest CutO(log n)O~(n 2 )BK’96 Max st Flow1O~(m+nv)KL’02 Sparsest CutO~(n 2 )AHK’05 Sparsest CutO(log 2 n)O~(m+n 3/2 )KRV’06 Sparsest CutO~(m+n 3/2+ ² )S’09 Perfect Matching in Regular Bip. Graphs n/aO~(n 1.5 )GKK’09 Sparsest CutO~(m+n 1+ ² )M’10 v = flow value n = # vertices m = # edges

Our Motivation BSS algorithm is very mysterious, and “too good to be true” Are there other methods to get sparsifiers with only O(n/ ² 2 ) edges? Wild Speculation: Union of O(1/ ² 2 ) random spanning trees gives a sparsifier (if weighted appropriately) – True for complete graph [GRV ‘08] We prove: Speculation is false, but Union of O(log 2 n/ ² 2 ) random spanning trees gives a sparsifier

Formal problem statement Design an algorithm such that Input: An undirected graph G=(V,E) Output: A weighted subgraph H=(V,F,w), where F µ E and w : F ! R Goals: | | ± G (U)| - w( ± H (U)) | · ² | ± G (U)| 8 U µ V |F| = O(n log n / ² 2 ) Running time = O~( m / ² 2 ) # edges between U and V\U in G weight of edges between U and V\U in H n = # vertices m = # edges | | ± (U)| - w( ± (U)) | · ² | ± (U)| 8 U µ V

Sparsifying Complete Graph Sampling: Construct H by sampling every edge of G with prob p=100 log n/n. Give each edge weight 1/p. Properties of H: # sampled edges = O(n log n) | ± G (U)| ¼ | ± H (U)| 8 U µ V So H is a sparsifier of G

Generalize to arbitrary G? Can’t sample edges with same probability! Idea [BK’96] Sample low-connectivity edges with high probability, and high-connectivity edges with low probability Keep this Eliminate most of these

Non-uniform sampling algorithm [BK’96] Input: Graph G=(V,E), parameters p e 2 [0,1] Output: A weighted subgraph H=(V,F,w), where F µ E and w : F ! R For i=1 to ½ For each edge e 2 E With probability p e, Add e to F Increase w e by 1/( ½ p e ) Main Question: Can we choose ½ and p e ’s to achieve sparsification goals?

Non-uniform sampling algorithm [BK’96] Claim: H perfectly approximates G in expectation! For any e 2 E, E[ w e ] = 1 ) For every U µ V, E[ w( ± H (U)) ] = | ± G (U)| Goal: Show every w( ± H (U)) is tightly concentrated Input: Graph G=(V,E), parameters p e 2 [0,1] Output: A weighted subgraph H=(V,F,w), where F µ E and w : F ! R For i=1 to ½ For each edge e 2 E With probability p e, Add e to F Increase w e by 1/( ½ p e )

Prior Work Benczur-Karger ‘96 – Set ½ = O(log n), p e = 1/“strength” of edge e (max k s.t. e is contained in a k-edge-connected vertex-induced subgraph of G) – All cuts are preserved –  e p e · n ) |F| = O(n log n) (# edges in sparsifier) – Running time is O(m log 3 n) Spielman-Srivastava ‘08 – Set ½ = O(log n), p e = “effective resistance” of edge e (view G as an electrical network where each edge is a 1-ohm resistor) – H is a spectral sparsifier of G ) all cuts are preserved –  e p e = n-1 ) |F| = O(n log n) (# edges in sparsifier) – Running time is O(m log 50 n) – Uses “Matrix Chernoff Bound” Assume ² is constant O(m log 3 n) [Koutis-Miller-Peng ’10] Similar to edge connectivity

Our Work Fung-Harvey ’10 (independently Hariharan-Panigrahi ‘10) – Set ½ = O(log 2 n), p e = 1/edge-connectivity of edge e – All cuts are preserved –  e p e · n ) |F| = O(n log 2 n) – Running time is O(m log 2 n) – Advantages: Edge connectivities natural, easy to compute Faster than previous algorithms Implies sampling by edge strength, effective resistances, or random spanning trees works – Disadvantages: Extra log factor, no spectral sparsification Assume ² is constant (min size of a cut that contains e) Why? Pr[ e 2 T ] = effective resistance of e and edges are negatively correlated

Our Work Fung-Harvey ’10 (independently Hariharan-Panigrahi ‘10) – Set ½ = O(log 2 n), p e = 1/edge-connectivity of edge e – All cuts are preserved –  e p e · n ) |F| = O(n log 2 n) – Running time is O(m log 2 n) – Advantages: Edge connectivities natural, easy to compute Faster than previous algorithms Implies sampling by edge strength, effective resistances… Extra trick: Can shrink |F| to O(n log n) by using Benczur-Karger to sparsify our sparsifier! – Running time is O(m log 2 n) + O~(n) Assume ² is constant (min size of a cut that contains e) O(n log n)

Our Work Fung-Harvey ’10 (independently Hariharan-Panigrahi ‘10) – Set ½ = O(log 2 n), p e = 1/edge-connectivity of edge e – All cuts are preserved –  e p e · n ) |F| = O(n log 2 n) – Running time is O(m log 2 n) – Advantages: Edge connectivities natural, easy to compute Faster than previous algorithms Implies sampling by edge strength, effective resistances… Panigrahi ’10 – A sparsifier with O(n log n / ² 2 ) edges, with running time O(m) in unwtd graphs and O(m)+O~(n/ ² 2 ) in wtd graphs Assume ² is constant (min size of a cut that contains e)

Notation: k uv = min size of a cut separating u and v Main ideas: – Partition edges into connectivity classes E = E 1 [ E 2 [... E log n where E i = { e : 2 i-1 · k e <2 i }

Notation: k uv = min size of a cut separating u and v Main ideas: – Partition edges into connectivity classes E = E 1 [ E 2 [... E log n where E i = { e : 2 i-1 · k e <2 i } – Prove weight of sampled edges that each cut takes from each connectivity class is about right – This yields a sparsifier U

Prove weight of sampled edges that each cut takes from each connectivity class is about right Notation: C = ± (U) is a cut C i = ± (U) Å E i is a cut-induced set Need to prove: C1C1 C2C2 C3C3 C4C4

Notation: C i = ± (U) Å E i is a cut-induced set C1C1 C2C2 C3C3 C4C4 Prove 8 cut-induced set C i Key Ingredients Chernoff bound: Prove small Bound on # small cuts: Prove #{ cut-induced sets C i induced by a small cut |C| } is small. Union bound: sum of failure probabilities is small, so probably no failures.

Counting Small Cut-Induced Sets Theorem: Let G=(V,E) be a graph. Fix any B µ E. Suppose k e ¸ K for all e in B. (k uv = min size of a cut separating u and v) Then, for every ® ¸ 1, |{ ± (U) Å B : | ± (U)| · ® K }| < n 2 ®. Corollary: Counting Small Cuts [K’93] Let G=(V,E) be a graph. Let K be the edge-connectivity of G. (i.e., global min cut value) Then, for every ® ¸ 1, |{ ± (U) : | ± (U)| · ® K }| < n 2 ®.

Comparison Theorem: Let G=(V,E) be a graph. Fix any B µ E. Suppose k e ¸ K for all e in B. (k uv = min size of a cut separating u and v) Then |{ ± (U) Å B : | ± (U)| · c }| < n 2c/K 8 c ¸ 1. Corollary [K’93]: Let G=(V,E) be a graph. Let K be the edge-connectivity of G. (i.e., global min cut value) Then, |{ ± (U) : | ± (U)| · c }| < n 2c/K 8 c ¸ 1. How many cuts of size 1? Theorem says < n 2, taking K=c=1. Corollary, says < 1, because K=0. (Slightly unfair)

Conclusions Graph sparsifiers important for fast algorithms and some combinatorial theorems Sampling by edge-connectivities gives a sparsifier with O(n log 2 n) edges in O(m log 2 n) time – Improvements: O(n log n) edges in O(m) + O~(n) time [Panigrahi ‘10] Sampling by effective resistances also works ) sampling O(log 2 n) random spanning trees gives a sparsifier Questions Improve log 2 n to log n? Sampling o(log n) random trees gives a sparsifier with o(log n) approximation?