智慧型節能:使用感測網路自動偵測異常空調 狀態之研究 Intelligent Sensing for Energy Saving : A Case Study on Detecting Abnormal Air-Conditioning States Using A Sensor Network Presenter.

Slides:



Advertisements
Similar presentations
Saving Energy, Timer & Automation Best Design Course 30 Minutes Test 10 Minutes TIS Training Program 2012, Rev 1.1
Advertisements

1 Application of for Predicting Indoor Airflow and Thermal Comfort.
DETECTING REGIONS OF INTEREST IN DYNAMIC SCENES WITH CAMERA MOTIONS.
HVAC: heating, ventilating, and air conditioning this is a thermostat: it sends signals to the heating/cooling system.
1 Thermal Comfort Control Based on Neural Network for HVAC Application Jian Liang and Ruxu Du Dept. of Automation and Computer-Aided Engineering The Chinese.
Benefits of Floor Heating Control Individual Room Temperature Control In Hydronic Floor Heating Applications – Simulation Studies, August 2003 Danfoss.
Model predictive control for energy efficient cooling and dehumidification Tea Zakula Leslie Norford Peter Armstrong.
Czech Technical University in Prague Faculty of Civil Engineering Department of Microenvironmental and Building Services Engineering Czech Technical University.
1 Meeting ASHRAE Fundamentals, Standard 55 & 62.1 with Chilled Beams Displacement Ventilation.
Chapter 4 Thermal Comfort
2005/5/51 新世紀多媒體通訊技術與應用之研發 Developing Multimedia Communication Techniques and Applications for the New Century 計畫編號: CHU-93-TR-004 執行期間: 93 年 08 月 01 日至.
智慧型節能:使用感測網路自動偵測異常空調 狀態之研究 Intelligent Sensing for Energy Saving : A Case Study on Detecting Abnormal Air-Conditioning States Using A Sensor Network Presenter.
Inertial and vision-based Simultaneous Localization and Mapping,I-vSLAM Source : 工研院 智慧機器人技術專輯 Authors : 謝祥文、張彥中、蔡雨坤、鄭明育 ( 工研院機械所 智慧機器人技術組 ) Speaker :余俊瑩.
智慧型節能:使用感測網路自動偵測異常空調 狀態之研究 Intelligent Sensing for Energy Saving : A Case Study on Detecting Abnormal Air-Conditioning States Using A Sensor Network Presenter.
Peter Xiang Gao, S. Keshav University of Waterloo.
A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based on Large Datasets Hai Xiang ZHAO, Phd candidate Frédéric.
計算機視覺研究室 專題實作簡報 張元翔 老師.
具備人臉追蹤與辨識功能的一個 智慧型數位監視系統 系統架構 在巡邏模式中 ,攝影機會左右來回巡視,並 利用動態膚色偵測得知是否有移動膚色物體, 若有移動的膚色物體則進入到追蹤模式,反之 則繼續巡視。
臺南縣官田鄉大崎村 66 號 66 Tachi, Kuantien, 720 Tainan, Taiwan Tel:(06) ~3 各大樓、系所暨單位 能資源管理人座談會 2010/06/29 14:00 遠距教室.
1 TANET 優化小組 : 研究專用出國頻寬申請 / 處理流程 中央大學 電算中心 Date:
冷凍空調自動控制 - 系統性能分析 李達生. Focusing here … 概論 自動控制理論發展 自控系統設計實例 Laplace Transform 冷凍空調自動控制 控制系統範例 控制元件作動原理 控制系統除錯 自動控制理論 系統穩定度分析 系統性能分析 PID Controller 自動控制實務.
指導教授 : 林啟芳 教授 組員 : 邱秉良 林育賢. 何謂 GPS  GPS 即全球定位系統,是一個中距離圓 型軌道衛星導航系統。它可以為地球表面 絕大部分地區( 98% )提供準確的定位、 測速和高精度的時間標準。
1 Chemical and Engineering Thermodynamics Chapter 1 Introduction Sandler.
CoolAir Temperature- and Variation-Aware Management for Free-Cooled Datacenters Íñigo Goiri, Thu D. Nguyen, and Ricardo Bianchini 1.
Quality-aware Data Collection in Energy Harvesting WSN Nga Dang Elaheh Bozorgzadeh Nalini Venkatasubramanian University of California, Irvine.
ALBERT PARK EEL 6788: ADVANCED TOPICS IN COMPUTER NETWORKS Energy-Accuracy Trade-off for Continuous Mobile Device Location, In Proc. of the 8th International.
10 Energy Saving Advices. 1- Lowering of the temperature at night Limit the lowering of the temperature at night. If the temperature is reduced too much,
Progress Report Presenter : Min-chia Chang Advisor : Prof. Jane Hsu Date :
Sensor-Based Fast Thermal Evaluation Model For Energy Efficient High-Performance Datacenters Q. Tang, T. Mukherjee, Sandeep K. S. Gupta Department of Computer.
Impact of Temperature on Occupants: Theory vs. Reality
Introduction to thermal comfort standards and to the proposed new version of EN ISO 7730.
Thermal Comfort Building Physics, Lo-Lo CDT Thursday 6 th October 2011.
Page 1 Sapphire  Fab condition Room temp 23 ±2 ℃ ; △≦ ±1 ℃ /h Humidity have to below: 80%(spec 60 ±10 %)  Cooling system confirmed the first lay-out.
University of Applied Sciences Cologne Institute of Applied Optics and Electronics Faculty of Information, Media and Electrical Engineering Microsystems.
Class Objectives Stress the importance of HVAC
資訊工程系智慧型系統實驗室 iLab 南台科技大學 1 A Static Hand Gesture Recognition Algorithm Using K- Mean Based Radial Basis Function Neural Network 作者 :Dipak Kumar Ghosh,
IPower: An Energy Conservation System for Intelligent Buildings International Journal of Sensor Networks Yu-Chee Tseng, You-Chiun Wang, and Lun- Wu Yeh.
A Novel Distributed Sensor Positioning System Using the Dual of Target Tracking Liqiang Zhang, Member, IEEE, Qiang Cheng, Member, IEEE, Yingge Wang, and.
1 Strained-Si Devices and Circuits for Low-Power Applications 系所 : 積體電路研究所 指導教授 : 易序忠 教授 學號 : 姓名 : 李俊志.
System overview 2011/03/04 1 NTU CSIE iAgent Lab AC state predictor thermal comfort calculator AC waste analysis AC information thermal comfort questionnaire.
Thermal-aware Issues in Computers IMPACT Lab. Part A Overview of Thermal-related Technologies.
A SURVEY OF MAC PROTOCOLS FOR WIRELESS SENSOR NETWORKS
Energy Conservation for Air Conditioner Presented by 鴨子.
Introduction to HVAC Optimization
PRESENCE BASED ADAPTIVE CONTROL FOR INDOOR BUILDING LIGHTING
Progress Report Presenter : Min-chia Chang Advisor : Prof. Jane Hsu Date :
A Recognition Method of Restricted Hand Shapes in Still Image and Moving Image Hand Shapes in Still Image and Moving Image as a Man-Machine Interface Speaker.
Analysis of Chilled Water System Presented by 鴨子.
A Protocol for Tracking Mobile Targets using Sensor Networks H. Yang and B. Sikdar Department of Electrical, Computer and Systems Engineering Rensselaer.
An Energy-Efficient Approach for Real-Time Tracking of Moving Objects in Multi-Level Sensor Networks Vincent S. Tseng, Eric H. C. Lu, & Kawuu W. Lin Institute.
Clustering-based Active Learning on Sensor Type Classification in Buildings Dezhi Hong, Hongning Wang, Kamin Whitehouse University of Virginia 1.
All content in this presentation is protected – © 2008 American Power Conversion Corporation Row Cooling.
Progress Report Presenter : Min-chia Chang Advisor : Prof. Jane Hsu Date :
Spatial-Temporal Data Mining in Traffic Incident Detection Authors: Ying Jin, Jing Dai, Chang-Tien Lu The 2006 SIAM Conference on Data Mining, Workshop.
The key to comfort and reduced fuel use for all heating and cooling The key to comfort and reduced fuel use for all heating and cooling.
LoLo 2016: How many ways can you change a light bulb? Exploring methods in energy research Regional differences in thermal comfort in a stratified heated.
Assessing Thermal Comfort in Deep Underground Mines By Maurice N. Sunkpal MSc. Candidate (Mining Engineering) Advisor: Dr. Charles Kocsis Department of.
Thesis Presentation by Peter Xiang Gao Supervised by Prof. S. Keshav.
Forecasting with Cyber-physical Interactions in Data Centers (part 3)
High boiler output is only required on a few coldest days of the heating season. Most days even comfort could be provided with reduced energy expense.
Presentation by James and Hina
National Taiwan University
Proceedings of 7th Windsor Conference: The changing context of comfort in an unpredictable world Cumberland Lodge, Windsor, UK, April London:
System Control based Renewable Energy Resources in Smart Grid Consumer
Utility Automation of Offices
Empirical and computational study of the thermal performance of a traditional housing type in Kosovo A. Rexhepi, A. Mahdavi Department of building physics.
Xin Qi, Matthew Keally, Gang Zhou, Yantao Li, Zhen Ren
Thermal comfort Factors
Ch. 12 Human Thermal Comfort
Personalized HVAC Control System
Presentation transcript:

智慧型節能:使用感測網路自動偵測異常空調 狀態之研究 Intelligent Sensing for Energy Saving : A Case Study on Detecting Abnormal Air-Conditioning States Using A Sensor Network Presenter : Min-Chia Chang Advisor : Prof. Jane Hsu Date :

Outline  Introduction  System Architecture  Analysis  Conclusion 2 NTU CSIE iAgent Lab

Energy Saving 3 NTU CSIE iAgent Lab  Reason  Policy

Power Consumption in a Building 4 NTU CSIE iAgent Lab (source : Continental Automated Buildings Association, CABA)

Architecture of Central A/C System  Chilled water host Evaporator Condenser  Other devices Pump Cooling tower 5 NTU CSIE iAgent Lab

Energy Conservation for Central A/C System 6 NTU CSIE iAgent Lab  Device setting The setting of the chiller water [Zhao, Enertech Engineering Company] Parameter optimization of the cooling tower [James and Frank 2010]  Building automation system Component Energy saving controller Infrared motion sensor (source : NTU 電機學系 )

Power Consumption in NTU CSIE  Total 9,036.4 KWH/day ≒ 28,012 NTD/day ( January April 2011 ) (source : NTU 校園數位電錶監視系統 )  Central A/C system ( July May 2011 ) 3,693.8 KHW/day 40.88% of the total (source : NTU 校園數位電錶監視系統 ) 7

Control of Central A/C System 8 NTU CSIE iAgent Lab  Central Chilled water host Off mode On mode (All year on duty)  Local A/C controller Off mode Venting mode Cooling mode

 Ideal A/C power consumption Assumption : people number ∝ A/C power consumption Abnormal A/C State in NTU CSIE 9 NTU CSIE iAgent Lab KWH

Abnormal A/C State in NTU CSIE  Real A/C power consumption From electricity meter 10 NTU CSIE iAgent Lab KWH A/C is turned off ? 20KWH

Abnormal A/C State in NTU CSIE 11 NTU CSIE iAgent Lab HotCold

Outline  Introduction  System Architecture  Analysis  Conclusion 12 NTU CSIE iAgent Lab

System Overview 13 NTU CSIE iAgent Lab

Wireless Sensor Network 14 NTU CSIE iAgent Lab

Sensors  Platform : Taroko Temperature and humidity sensor : SHT 11 Infrared motion sensor 15 NTU CSIE iAgent Lab

Nodes in the Sensor Network 16 NTU CSIE iAgent Lab  Sender (temperature, humidity, ID) (preamble, motion value, ID)  Receiver Data saving : 1 minute  Relay

Deploy Unit 17 NTU CSIE iAgent Lab  Room : divide into zones according to A/C controller  Environmental data temperature and humidity vent indoor motion value indoor vent motion sensor

Deployment 18 NTU CSIE iAgent Lab  One server per floor (1F to 5F)  Relays deploy around the corridors

Deployment  Room Class room : R104 Computer class room : R204 Professor room : R318 Laboratory : R336 Seminar room : R324, R439, R NTU CSIE iAgent Lab

A/C Mode Recognition 20 NTU CSIE iAgent Lab

A/C Mode  Mode Off mode : blower= off, valve = off Venting mode : blower = on, valve = off Cooling mode : blower= on, valve = on 21 NTU CSIE iAgent Lab wind velocity wind velocity A/C mode A/C mode temperature setting temperature setting A/C power Off Venting Cooling indoor temperature ≧ <

A/C Mode Recognition  GOAL : Using machine learning to build the model for recognizing the A/C mode  INPUT : Feature vector  OUTPUT : A/C mode 22 NTU CSIE iAgent Lab

Features 23 NTU CSIE iAgent Lab CategoryFeatureDimensionType Temperature and Humidity T I, H I, T V, H V, T O, H O 6Float Delta ΔT I,V, ΔH I,V ΔT I,O, ΔH I,O ΔT O,V, ΔH O,V 6Float Parameters (Central A/C ) Host3{0,1} Leaving Temperature1Float Rotation Speed of Pump1Float Spatial Building2{0,1} Floor5{0,1} Room Type5{0,1} Area1Float

Annotation  Method 1 Control on purpose  Method 2 Record by camera Temporal feature 24 NTU CSIE iAgent Lab PeriodPlaceAnnotation November 2010R104, R204, R318, R324, R336, R439, R521Method1 December January 2011 R204, R324, R336Method2 February March 2011 R104, R204Method2

Dataset 25 NTU CSIE iAgent Lab PlaceTotal DataLabel = off Label = venting Label = cooling Missing Data 204_117,3456,3716,8174,1574, % 204_217,1066,5698,1682,3694, % 204_316,6946,3575,3814,9564, % 204_416,4158,5925,0142,8094, % 204_517,4876,569010,9186, % 204_615,6166,7945,8432,9799, % 336_220,8896,43910,1004,3505, %

Experiment Setting  Each zone builds a model 1.3-fold cross validation 2.The weather pattern in testing data doesn’t exist in training data Does not collect all the weather patterns 26 NTU CSIE iAgent Lab

Steps of the Experiment 2 27 NTU CSIE iAgent Lab outdoor temperature outdoor humidity  Cluster Algorithm : k-means (k=4) Feature: outdoor temperature, outdoor humidity  Leave-one-out Cross Validation 336_2

Preprocessing  Missing data treatment Encoding Recognize the data is missing or not Linear interpolation The change of temperature or humidity is linear  Normalization Min-max normalization : [0,1] It prevents features with large scale biasing the result 28 NTU CSIE iAgent Lab

Experiment Result  Result The model achieves high accuracy The model can recognize the data with the weather pattern not included in training data 204_5 has the highest accuracy 29 NTU CSIE iAgent Lab ZoneExperiment 1Experiment 2 204_198.5%87.0% 204_289.1%85.0% 204_399.8%98.4% 204_497.9%90.2% 204_599.9%99.0% 204_693.9%86.3% 336_293.2%92.1%

Thermal Comfort Calculation 30 NTU CSIE iAgent Lab

Thermal Comfort Calculation  GOAL : Find the thermal comfort range to determine the indoor temperature being too cold or too hot  INPUT : Questionnaire  OUTPUT : Thermal comfort range 31 NTU CSIE iAgent Lab

PMV  Predicted Mean Vote model [Fanger 1970] Calculated analytically by 6 factors : [-3, +3] Metabolic rate Clothing insulation Air temperature Radiant temperature (Outdoor temperature) Relative humidity Air velocity 32 NTU CSIE iAgent Lab

Thermal Sensation Scale  Thermal sensation scale [ASHRAE Standard 55] Adaptive method to get PMV Thermal sensation vote (TSV) Constraints Metabolic rate : 1.0Met - 2.0Met Clothing insulation : ≦ 1.5 Clo Comfortable or not -1, 0, +1 : yes -2, -3, +2, +3 : no 33 NTU CSIE iAgent Lab ScaleThermal sensation +3Hot +2Warm +1Slightly warm 0Neutral Slightly cool -2Cool -3Cold

Thermal Comfort - Linear Regression  Field survey Collect thermal sensation vote Outdoor temperature has the highest relevance 1.T C = T O (Worldwide) [deDear and Brager 1998] 2.T C = T O (Hong Kong) [Mui and Chan 2003] 3.T C = T O (Taiwan) [Lin et al. 2008] 34 NTU CSIE iAgent Lab

Questionnaire  Thermal sensation scale : {-3, -2, -1, 0,+1, +2, +3}  Direct question : {comfortable, not comfortable}  Metabolic rate : {after sport, static activity}  Insulation : {sleeveless, shirt-sleeve, long-sleeve, thick coat} 35 NTU CSIE iAgent Lab VALID !

Data Collection R204 (computer class room)R336 (laboratory) PeriodMarch July 2010December February 2011 Number1,7451, NTU CSIE iAgent Lab Comfortable55 (46%) 10 (24%) 283 (86%) 1604 (98%) 308 (70%) 39 (43%) 16 (14%) Not Comfortable 65 (54%) 32 (76%) 48 (14%) 34 (2%) 131 (30%) 52 (57%) 101 (86%)

Result 37 NTU CSIE iAgent Lab  Linear regression equation T C = T O 1.T C = T O (Worldwide) 2.T C = T O (Hong Kong) 3.T C = T O (Taiwan)

PMV - PPD  Predicted of Percentage Dissatisfied model [Olesen and Bragen 2004] Typical standard : 80% acceptability, (PMV, PPD)= (±0.85, 20) Higher standard : 90% acceptability, (PMV, PPD)= (±0.50, 10) 38 NTU CSIE iAgent Lab

Thermal Comfort Range 39 NTU CSIE iAgent Lab  Regression Indoor temperature Mean thermal sensation vote (PMV) during each ℃ 2.67

Thermal Comfort Range 40 NTU CSIE iAgent Lab 2.67

A/C State Evaluation 41 NTU CSIE iAgent Lab

A/C State Evaluation  GOAL : Classify the room’s A/C state to normal or abnormal  INPUT : Each zone Occupancy state A/C mode Indoor temperature Thermal comfort range  OUTPUT : A/C state 42 NTU CSIE iAgent Lab

A/C State 43 NTU CSIE iAgent Lab people in the room A/C = turned on Y N Y N normal abnormal A/C = cooling mode Y N normal indoor temperature ? comfort range indoor temperature ? comfort range lowerhigherwithin normal abnormal

Outline  Introduction  System Architecture  Analysis  Conclusion 44 NTU CSIE iAgent Lab

Analysis of Abnormal A/C States 45 NTU CSIE iAgent Lab Abnormal A/C States Detecting System Abnormal A/C States Detecting System normal/ abnormal history data analysis history data analysis User useful information

Target Room  Room Class room : R104 Computer class room : R204 Professor room : R318 Laboratory : R336 Seminar room : R324, R439, R NTU CSIE iAgent Lab

Valid Data  From January 2011 to May NTU CSIE iAgent Lab PlaceJanuaryFebruaryMarchAprilMay R10436,52582%33,04582%36,95883%34,07679%6,07214% R20439,13588%15,40138%28,12363%31,16772%13,95831% R31833,44475%32,05379%35,74280%31,97874%34,80678% R %26,72266%29,89067%24,97858%29,21265% R33635,27779%28,87272%43,08897%39,92092%40,60491% R43939,68189%24,28460%35,21279%30,65871%34,15877% R521386,5987%34,92787%38,17186%26,99262%18,65742%

Professor Room - R NTU CSIE iAgent Lab State (April 2011)NumberPercentageColor 0 : no people but A/C is turn on(abnormal)2,2016.9%Yellow 1 : too cold (abnormal)2420.8%Blue 2 : too hot (abnormal) 10%Red 3 : others (normal)29, %Green distribution during a week weekday weekend

Class Room – R NTU CSIE iAgent Lab distribution during a week State (April 2011)NumberPercentageColor 0 : no people but A/C is turn on(abnormal)6281.8%Yellow 1 : too cold (abnormal)3,0629.0%Blue 2 : too hot (abnormal) 10%Red 3 : others (normal)30, %Green weekday weekend

Computer Class Room – R NTU CSIE iAgent Lab State (April 2011)NumberPercentageColor 0 : no people but A/C is turn on(abnormal)5, %Yellow 1 : too cold (abnormal)18, %Blue 2 : too hot (abnormal) 140%Red 3 : others (normal)7, %Green weekday weekend

Class Room – R NTU CSIE iAgent Lab State (April 2011)NumberPercentageColor 0 : no people but A/C is turn on(abnormal)15, %Yellow 1 : too cold (abnormal)00.0%Blue 2 : too hot (abnormal) 5, %Red 3 : others (normal)19, %Green weekday weekend

Seminar Room 52 NTU CSIE iAgent Lab State (April 2011)R324R439R521 0 : no people but A/C is turn on(abnormal)3.6%8.6%5.9% 1 : too cold (abnormal)5.5%2.9%4.4% 2 : too hot (abnormal)0.0% 3 : others (normal)90.9%88.4%89.6% R324 R439 R521

Result  Professor room Cooling mode is too cold for the professor, so State 0 happens  Class room Administrator decreases a lot of abnormal states  Computer class room Students does not change the A/C mode even if State 1 happens  Laboratory State 0 happens often in midnight  Seminar room State 0 and State 1 takes about 10% 53 NTU CSIE iAgent Lab

R204 and R NTU CSIE iAgent Lab  R204 State 1 takes up a big percentage in every month  R336 State 0 takes up a big percentage in every month When the weather became warmer, state 2 would happen more frequently

Outline  Introduction  System Architecture  Analysis  Conclusion 55 NTU CSIE iAgent Lab

Conclusion and Contribution  Data collection : more than five months and continuously  A/C mode recognition model : accuracy is higher than 85%  Thermal comfort range : 19.32℃ and 24.67℃  Abnormal A/C states Professor room : 7.7% Class room : 10.8% Computer class room : 75.9% Laboratory : 52.4% Seminar room : 10.3% 56 NTU CSIE iAgent Lab

Future Work  Improve the quality of the wireless sensor network  Use persuasive technology to provide the results for users  Recognize the activity level of NTU CSIE in each time interval 57 NTU CSIE iAgent Lab

Thank You Q & A 58 NTU CSIE iAgent Lab

2010/10/14 59 NTU CSIE iAgent Lab

60 NTU CSIE iAgent Lab

61 NTU CSIE iAgent Lab

Abnormal A/C State in NTU CSIE  Ideal power consumption 62 NTU CSIE iAgent Lab KWH

Abnormal A/C State in NTU CSIE  Real power consumption 63 NTU CSIE iAgent Lab KWH A/C is turned off ?

Deployment 64 NTU CSIE iAgent Lab  One server per floor (1F to 5F)  Relays deploy around the corridors

標記 2010/12/09 65 NTU CSIE iAgent Lab 地點時間 時間長度 ( 分鐘 ) R10411/14 00:00 – 11/15 17: R11311/12 14:17 – 11/15 17: R20411/13 11:43 – 11/15 10: R31811/13 11:34 – 11/15 17: R32411/13 12:33 – 11/15 10: R33611/12 08:47 – 11/15 11: R43911/13 11:30 – 11/15 10: R51311/12 14:27 – 11/15 14: R52111/14 14:55 – 11/15 17:301595

2010/10/14 66 NTU CSIE iAgent Lab

67 NTU CSIE iAgent Lab context dataindexdimensionsValue 室內溫 / 濕度 (raw)1-22Float 出風口溫 / 濕度 (raw)3-42Float 室外溫 / 濕度 5-62Float 冰水主機 7-93{0,1} 出水溫度 101Integer 泵浦轉速 111Float 舊館 / 新館 {0,1} 樓層 {0,1} 房間類型 {0,1} 區域編號 {0,1} 建積 311float 星期幾 {0,1} 周間 / 周末 {0,1} 學期中 / 寒暑假 {0,1} 小時 {0,1} 室內溫 / 濕度 (Interpolation)67-682Float 出風口溫 / 濕度 (Interpolation)69-702Float 室內溫 / 濕度 (Encode)71-722Float 出風口溫 / 濕度 (Encode)73-742Float 差距 ( 室內, 出風口 )75-762Float 差距 ( 室內, 室外 )77-782Float 差距 ( 出風口, 室外 )79-802Float

Dataset  D={(x n,y n )}, where n=1 to N each minute of labeled period (original : intersection of vent and indoor) labeled by camera (original : controlled on purpose by duck) size = 77, /12/01 68 NTU CSIE iAgent Lab

 perhaps bringing up Structural Risk Minimization versus traditional Empirical Risk Minimization as it relates to the avoidance of local minima and overfitting 69 NTU CSIE iAgent Lab

70 NTU CSIE iAgent Lab Zone(Experiment 1)SVM(linear)SVM(RBF) Additive Logistic Regression 204_197.6%98.5%98.4% 204_289.0%89.1%96.2% 204_399.8% 204_494.3%97.9%98.0% 204_599.9% 204_693.7%93.9%94.2% 336_293.2% 93.4%

Cross-Validation : 3-Fold 71 NTU CSIE iAgent Lab T (V) TH(V)TH(V), TH(I)TH(V), TH(I), TH(O) TH(V), TH(I), TH(O), AC host, AC degree, AC speed 204_ _ _ _ _ _ _ Avg

72 NTU CSIE iAgent Lab

 PPD=100-95*e *PMV^ *PMV^2 73 NTU CSIE iAgent Lab

Thermal Comfort Range 74 NTU CSIE iAgent Lab

A/C State 75 NTU CSIE iAgent Lab  Abnormal No people in the room but there exists at least one zone’s AC not closed People in the room and there exists at least one zone where the AC is cooling mode and cooling below lower bound of the comfort range People in the room and there exists at least one zone where the AC is cooling mode but warmer above upper bound of the comfort range  Normal Other states

R NTU CSIE iAgent Lab EventR104_T 0: 不正常 ( 無人, 空調開啟 ) 3.6% (898) 1: 不正常 ( 有人, 空調開啟且過冷 ) 5.5% (1381) 2: 不正常 ( 有人, 空調開啟且過熱 ) 0% (0) 3: 正常 ( 其他使用情形 ) 90.9% (22699) weekday weekend distribution during a week

Seminar Room – R NTU CSIE iAgent Lab State(April 2011) Percentage 0 : no people but AC not closed (abnormal) 2,650 (8.6%) 1 : too cold (abnormal) 897 (2.9%) 2 : too hot (abnormal) 0 (0.0%) 3 : others (normal) 27,111 (88.4%) weekday weekend distribution during a week

R NTU CSIE iAgent Lab EventR104_T 0: 不正常 ( 無人, 空調開啟 ) 5.9% (1594) 1: 不正常 ( 有人, 空調開啟且過冷 ) 4.4% (1196) 2: 不正常 ( 有人, 空調開啟且過熱 ) 0.0% (4) 3: 正常 ( 其他使用情形 ) 89.6% (24198) weekday weekend distribution during a week