ETHEM ALPAYDIN © The MIT Press, 2010 Lecture Slides for.

Slides:



Advertisements
Similar presentations
Artificial Neural Networks
Advertisements

Learning in Neural and Belief Networks - Feed Forward Neural Network 2001 년 3 월 28 일 안순길.
1 Machine Learning: Lecture 4 Artificial Neural Networks (Based on Chapter 4 of Mitchell T.., Machine Learning, 1997)
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
Neural Network I Week 7 1. Team Homework Assignment #9 Read pp. 327 – 334 and the Week 7 slide. Design a neural network for XOR (Exclusive OR) Explore.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning 3rd Edition
Tuomas Sandholm Carnegie Mellon University Computer Science Department
Classification Neural Networks 1
Perceptron.
INTRODUCTION TO Machine Learning 2nd Edition
Lecture 14 – Neural Networks
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
Connectionist models. Connectionist Models Motivated by Brain rather than Mind –A large number of very simple processing elements –A large number of weighted.
Chapter 5 NEURAL NETWORKS
Neural Networks Multi-stage regression/classification model activation function PPR also known as ridge functions in PPR output function bias unit synaptic.
Rutgers CS440, Fall 2003 Neural networks Reading: Ch. 20, Sec. 5, AIMA 2 nd Ed.
S. Mandayam/ ANN/ECE Dept./Rowan University Artificial Neural Networks / Fall 2004 Shreekanth Mandayam ECE Department Rowan University.
Back-Propagation Algorithm
Introduction to Neural Networks John Paxton Montana State University Summer 2003.
FCAC, University of Hyderabad 1 / 59 Connections Chapter 6 Paul Thagard (2005). Mind: An Introduction to Cognitive Science. 2 nd Edition. MIT Press.
Artificial Neural Networks
MACHINE LEARNING 12. Multilayer Perceptrons. Neural Networks Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
Artificial Neural Networks
LOGO Classification III Lecturer: Dr. Bo Yuan
CHAPTER 11 Back-Propagation Ming-Feng Yeh.
1 Introduction to Artificial Neural Networks Andrew L. Nelson Visiting Research Faculty University of South Florida.
Artificial Neural Networks
Presentation on Neural Networks.. Basics Of Neural Networks Neural networks refers to a connectionist model that simulates the biophysical information.
© N. Kasabov Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, MIT Press, 1996 INFO331 Machine learning. Neural networks. Supervised.
Introduction to Neural Networks Debrup Chakraborty Pattern Recognition and Machine Learning 2006.
Machine Learning Chapter 4. Artificial Neural Networks
Waqas Haider Khan Bangyal. Multi-Layer Perceptron (MLP)
11 CSE 4705 Artificial Intelligence Jinbo Bi Department of Computer Science & Engineering
Lecture 10 Artificial Neural Networks Dr. Jianjun Hu mleg.cse.sc.edu/edu/csce833 CSCE833 Machine Learning University of South Carolina Department of Computer.
NEURAL NETWORKS FOR DATA MINING
Classification / Regression Neural Networks 2
Artificial Neural Networks. The Brain How do brains work? How do human brains differ from that of other animals? Can we base models of artificial intelligence.
Artificial Neural Networks An Introduction. What is a Neural Network? A human Brain A porpoise brain The brain in a living creature A computer program.
Mehdi Ghayoumi MSB rm 132 Ofc hr: Thur, a Machine Learning.
Intro. ANN & Fuzzy Systems Lecture 14. MLP (VI): Model Selection.
Neural Networks and Backpropagation Sebastian Thrun , Fall 2000.
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
Neural Network Basics Anns are analytical systems that address problems whose solutions have not been explicitly formulated Structure in which multiple.
Back-Propagation Algorithm AN INTRODUCTION TO LEARNING INTERNAL REPRESENTATIONS BY ERROR PROPAGATION Presented by: Kunal Parmar UHID:
Fundamentals of Artificial Neural Networks Chapter 7 in amlbook.com.
Neural Networks Presented by M. Abbasi Course lecturer: Dr.Tohidkhah.
Artificial Neural Networks Chapter 4 Perceptron Gradient Descent Multilayer Networks Backpropagation Algorithm 1.
Chapter 6 Neural Network.
Artificial Neural Networks By: Steve Kidos. Outline Artificial Neural Networks: An Introduction Frank Rosenblatt’s Perceptron Multi-layer Perceptron Dot.
Pattern Recognition Lecture 20: Neural Networks 3 Dr. Richard Spillman Pacific Lutheran University.
Multilayer Perceptrons
INTRODUCTION TO Machine Learning 3rd Edition
with Daniel L. Silver, Ph.D. Christian Frey, BBA April 11-12, 2017
Artificial Neural Networks
CSSE463: Image Recognition Day 17
Machine Learning Today: Reading: Maria Florina Balcan
Intelligent Leaning -- A Brief Introduction to Artificial Neural Networks Chiung-Yao Fang.
Classification Neural Networks 1
Synaptic DynamicsII : Supervised Learning
Intelligent Leaning -- A Brief Introduction to Artificial Neural Networks Chiung-Yao Fang.
CSSE463: Image Recognition Day 17
Machine Learning: Lecture 4
Machine Learning: UNIT-2 CHAPTER-1
CSSE463: Image Recognition Day 17
Seminar on Machine Learning Rada Mihalcea
Presentation transcript:

ETHEM ALPAYDIN © The MIT Press, Lecture Slides for

Neural Networks Networks of processing units (neurons) with connections (synapses) between them Large number of neurons: Large connectitivity: 10 5 Parallel processing Distributed computation/memory Robust to noise, failures 3Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Understanding the Brain Levels of analysis (Marr, 1982) 1. Computational theory 2. Representation and algorithm 3. Hardware implementation Reverse engineering: From hardware to theory Parallel processing: SIMD vs MIMD Neural net: SIMD with modifiable local memory Learning: Update by training/experience 4Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Perceptron 5 (Rosenblatt, 1962) Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

What a Perceptron Does Regression: y=wx+w 0 Classification: y=1(wx+w 0 >0) 6 w w0w0 y x x 0 =+1 w w0w0 y x s w0w0 y x Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

K Outputs 7 Classification : Regression : Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Training 8 Online (instances seen one by one) vs batch (whole sample) learning: No need to store the whole sample Problem may change in time Wear and degradation in system components Stochastic gradient-descent: Update after a single pattern Generic update rule (LMS rule): Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Training a Perceptron: Regression Regression (Linear output): 9 Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Single sigmoid output K>2 softmax outputs Classification 10Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Learning Boolean AND 11Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

XOR No w 0, w 1, w 2 satisfy: 12 (Minsky and Papert, 1969) Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Multilayer Perceptrons 13 (Rumelhart et al., 1986) Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

14 x 1 XOR x 2 = (x 1 AND ~x 2 ) OR (~x 1 AND x 2 ) Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Backpropagation 15Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

16 Regression Forward Backward x Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Regression with Multiple Outputs 17 zhzh v ih yiyi xjxj w hj Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

18Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

19Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

20 whx+w0whx+w0 zhzh vhzhvhzh Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

One sigmoid output y t for P(C 1 |x t ) and P(C 2 |x t ) ≡ 1-y t Two-Class Discrimination 21Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

K>2 Classes 22Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

MLP with one hidden layer is a universal approximator (Hornik et al., 1989), but using multiple layers may lead to simpler networks Multiple Hidden Layers 23Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Momentum Adaptive learning rate Improving Convergence 24Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Overfitting/Overtraining 25 Number of weights: H (d+1)+(H+1)K Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

26Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Structured MLP 27 (Le Cun et al, 1989) Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Weight Sharing 28Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Hints 29 Invariance to translation, rotation, size Virtual examples Augmented error: E’=E+λ h E h If x’ and x are the “same”: E h =[g(x|θ)- g(x’|θ)] 2 Approximation hint: (Abu-Mostafa, 1995) Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Tuning the Network Size Destructive Weight decay: Constructive Growing networks 30 (Ash, 1989) (Fahlman and Lebiere, 1989) Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Consider weights w i as random vars, prior p(w i ) Weight decay, ridge regression, regularization cost=data-misfit + λ complexity More about Bayesian methods in chapter 14 Bayesian Learning 31Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Dimensionality Reduction 32Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

33Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Learning Time Applications: Sequence recognition: Speech recognition Sequence reproduction: Time-series prediction Sequence association Network architectures Time-delay networks (Waibel et al., 1989) Recurrent networks (Rumelhart et al., 1986) 34Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Time-Delay Neural Networks 35Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Recurrent Networks 36Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Unfolding in Time 37Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)