Chapter 28 Sources of Magnetic Field

Slides:



Advertisements
Similar presentations
Sources of the Magnetic Field
Advertisements

Magnetism and Currents. A current generates a magnetic field. A magnetic field exerts a force on a current. Two contiguous conductors, carrying currents,
Lecture 8 Examples of Magnetic Fields Chapter 19.7  Outline Long Wire and Ampere’s Law Two Parallel Contours Solenoid.
20.6 Force between Two Parallel Wires The magnetic field produced at the position of wire 2 due to the current in wire 1 is: The force this field exerts.
Magnetism Chapter 27 opener. Magnets produce magnetic fields, but so do electric currents. An electric current flowing in this straight wire produces a.
Chapter 30 Sources of the magnetic field
Chapter 27 Sources of the magnetic field
Unit 4 Day 8 – Ampere’s Law & Magnetic Fields thru Solenoids & Toroids Definition of Current Ampere’s Law Magnetic Field Inside & Outside a Current Carrying.
Wednesday, Oct. 26, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #16 Wednesday, Oct. 26, 2005 Dr. Jaehoon Yu Charged Particle.
Phy 213: General Physics III Chapter 29: Magnetic Fields to Currents Lecture Notes.
Physics 121 Practice Problem Solutions 10 Magnetic Fields from Currents (Biot-Savart and Ampere’s Law) Contents: 121P10 - 1P, 5P, 8P, 10P, 19P, 29P,
PHY 1361Dr. Jie Zou1 Chapter 30 Sources of the Magnetic Field (Cont.)
Lecture 8b – Sources of Magnetic Field
Source of Magnetic Field Ch. 28
Two questions: (1) How to find the force, F on the electric charge, q excreted by the field E and/or B? (2) How fields E and/or B can be created?
B field of current element (sec. 28.2) Law of Biot and Savart B field of current-carrying wire (sec. 28.3) Force between conductors(sec. 28.4) B field.
Electromagnet. Wire Field  A moving charge generates a magnetic field. Symmetry with experiencing force Perpendicular to direction of motion Circles.
Sources of Magnetic Field
Chapter 30: Sources of the Magnetic Field
Copyright © 2009 Pearson Education, Inc. Chapter 27 Magnetism.
Copyright © 2009 Pearson Education, Inc. Chapter 27 Magnetism.
Chapter 29 Electromagnetic Induction and Faraday’s Law HW#9: Chapter 28: Pb.18, Pb. 31, Pb.40 Chapter 29:Pb.3, Pb 30, Pb. 48 Due Wednesday 22.
Chapter 28--Examples.
Copyright © 2009 Pearson Education, Inc. © 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for.
AP Physics C Montwood High School R. Casao
Chapter 20 The Production and Properties of Magnetic Fields.
Nov PHYS , Dr. Andrew Brandt PHYS 1444 – Section 003 Lecture #20, Review Part 2 Tues. November Dr. Andrew Brandt HW28 solution.
Wed. Feb. 18 – Physics Lecture #30 Magnetic Fields 1. Magnetic Fields 2. Magnetic Moments & Torque 3. Ampere’s Law Warm-Up, Discuss with Neighbors: Wire.
Mar 24, 2014PHYS PHYS 1442 – Section 004 Lecture #17, Review for test 2 Monday March Dr. Justin Griffiths for Dr. Brandt Loose ends and.
Monday, Mar. 27, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #16 Monday, Mar. 27, 2006 Dr. Jaehoon Yu Sources of Magnetic.
Physics 202, Lecture 13 Today’s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between.
30.5 Magnetic flux  30. Fig 30-CO, p.927
Review Problem Review Problem Review Problem 3 5.
Monday, Oct. 31, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #17 Monday, Oct. 31, 2005 Dr. Jaehoon Yu Example for Magnetic.
Copyright © 2009 Pearson Education, Inc. Ampère’s Law.
Magnetic Field Chapter 28 opener. A long coil of wire with many closely spaced loops is called a solenoid. When a long solenoid carries an electric current,
AP Physics C III.D – Magnetic Forces and Fields. The source and direction of magnetic fields.
Magnetic Fields in Wires. Strength of Magnetic Field Strength of the magnetic field produced by a current carrying wire is directly proportional to the.
Thursday, Nov. 3, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #18 Thursday, Nov. 3, 2011 Dr. Jaehoon Yu Torque on a Current.
Thursday March 31, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #16 Thursday Mar 31, 2011 Dr. Andrew Brandt HW7 Ch 27 is due Fri.
Chapter 20 Magnetism. Units of Chapter 20 Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic.
TUesday, April 12, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Review #2 Tuesday April 12, 2011 Dr. Andrew Brandt TEST IS THURSDAY 4/14.
Copyright © 2009 Pearson Education, Inc. Chapter 27 Magnetism.

Copyright © 2009 Pearson Education, Inc. Chapter 28 Sources of Magnetic Field.
Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Chapter 26 Sources of Magnetic Field. Biot-Savart Law (P 614 ) 2 Magnetic equivalent to C’s law by Biot & Savart . P. P Magnetic field due to an infinitesimal.
Lecture 28: Currents and Magnetic Field: I
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Copyright © 2009 Pearson Education, Inc. Chapter 27 Magnetism.
More Examples of Magnetic Flux Biot-Savart Law Ampère’s Law.
Chapter 29. Magnetic Field Due to Currents What is Physics? Calculating the Magnetic Field Due to a Current Force Between Two Parallel.
Problem 4 A metal wire of mass m can slide without friction on two parallel, horizontal, conducting rails. The rails are connected by a generator which.
Chapter 28 Sources of Magnetic Field Ampère’s Law Example 28-6: Field inside and outside a wire. A long straight cylindrical wire conductor of radius.
Two questions: (1) How to find the force, F on the electric charge, q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Ampère’s Law Figure Arbitrary path enclosing a current, for Ampère’s law. The path is broken down into segments of equal length Δl.
Chapter 30: Sources of the Magnetic Field
PHYS 1444 – Section 501 Lecture #16
Sources of the Magnetic Field
PHYS 1444 – Section 004 Lecture #11
Ampère’s Law Figure Arbitrary path enclosing a current, for Ampère’s law. The path is broken down into segments of equal length Δl.
PHYS 1444 – Section 003 Lecture #15-16
Two questions: (1) How to find the force, F on the electric charge, q excreted by the field E and/or B? (2) How fields E and/or B can be created?
PHYS 1444 – Section 002 Lecture #19
Phys102 Lecture 16/17 Ampere's Law
PHYS 1444 – Section 002 Lecture #19
PHYS 1444 – Section 003 Lecture #16
Chapter 28 Sources of Magnetic Field
Presentation transcript:

Chapter 28 Sources of Magnetic Field Chapter 28 opener. A long coil of wire with many closely spaced loops is called a solenoid. When a long solenoid carries an electric current, a nearly uniform magnetic field is produced within the loops as suggested by the alignment of the iron filings in this photo. The magnitude of the field inside a solenoid is readily found using Ampère’s law, one of the great general laws of electromagnetism, relating magnetic fields and electric currents. We examine these connections in detail in this Chapter, as well as other means for producing magnetic fields.

28-1 Magnetic Field Due to a Straight Wire Example 28-2: Magnetic field midway between two currents. Two parallel straight wires 10.0 cm apart carry currents in opposite directions. Current I1 = 5.0 A is out of the page, and I2 = 7.0 A is into the page. Determine the magnitude and direction of the magnetic field halfway between the two wires. Figure 28-3. Example 28–2. Wire 1 carrying current I1 out towards us, and wire 2 carrying current I2 into the page, produce magnetic fields whose lines are circles around their respective wires. Solution: As the figure shows, the two fields are in the same direction midway between the wires. Therefore, the total field is the sum of the two, and points upward: B1 = 2.0 x 10-5 T; B2 = 2.8 x 10-5 T; so B = 4.8 x 10-5 T.

28-2 Force between Two Parallel Wires The magnetic field produced at the position of wire 2 due to the current in wire 1 is and 𝐹 2 = 𝐼 2 𝐵 1 ℓ 2 The force this field exerts on a length l2 of wire 2 is Figure 28-5. (a) Two parallel conductors carrying currents I1 and I2. (b) Magnetic field B1 produced by I1 (Field produced by I2 is not shown.) B1 points into page at position of I2.

28-2 Force between Two Parallel Wires Parallel currents attract; antiparallel currents repel. Figure 28-6. (a) Parallel currents in the same direction exert an attractive force on each other. (b) Antiparallel currents (in opposite directions) exert a repulsive force on each other.

28-2 Force between Two Parallel Wires Example 28-4. Force between two current-carrying wires. The two wires of a 2.0-m-long appliance cord are 3.0 mm apart and carry a current of 8.0 A dc. Calculate the force one wire exerts on the other. Solution: F = 8.5 x 10-3 N, and is repulsive. Appliances powered by 12V dc current are marketed to truckers, campers, people running on solar power (especially off-grid), among others.

28-2 Force between Two Parallel Wires Example 28-5: Suspending a wire with a current. A horizontal wire carries a current I1 = 80 A dc. A second parallel wire 20 cm below it must carry how much current I2 so that it doesn’t fall due to gravity? The lower wire has a mass of 0.12 g per meter of length. Solution: The magnetic force due to the current in the wire must be equal and opposite to the gravitational force on the second wire. We need a definite length of wire, as the forces on an infinitely long wire will be infinite; choose 1 meter for simplicity. Substitution gives I2 = 15 A.

28-3 Definitions of the Ampere and the Coulomb The ampere is officially defined in terms of the force between two current-carrying wires: One ampere is defined as that current flowing in each of two long parallel wires 1 m apart, which results in a force of exactly 2 x 10-7 N per meter of length of each wire. The coulomb is then defined as exactly one ampere-second.

28-4 Ampère’s Law Ampère’s law relates the magnetic field around a closed loop to the total current flowing through the loop: Figure 28-8. Arbitrary path enclosing a current, for Ampère’s law. The path is broken down into segments of equal length Δl. This integral is taken around the edge of the closed loop.

28-4 Ampère’s Law Using Ampère’s law to find the field around a long straight wire: Use a circular path with the wire at the center; then B is tangent to at every point. The integral then gives Figure 28-9. Circular path of radius r. so B = μ0I/2πr, as before.

28-4 Ampère’s Law Example 28-6: Field inside and outside a wire. A long straight cylindrical wire conductor of radius R carries a current I of uniform current density in the conductor. Determine the magnetic field due to this current at (a) points outside the conductor (r > R) and (b) points inside the conductor (r < R). Assume that r, the radial distance from the axis, is much less than the length of the wire. (c) If R = 2.0 mm and I = 60 A, what is B at r = 1.0 mm, r = 2.0 mm, and r = 3.0 mm? Solution: We choose a circular path around the wire; if the wire is very long the field will be tangent to the path. a. The enclosed current is the total current; this is the same as a thin wire. B = μ0I/2πr. b. Now only a fraction of the current is enclosed within the path; if the current density is uniform the fraction of the current enclosed is the fraction of area enclosed: Iencl = Ir2/R2. Substituting and integrating gives B = μ0Ir/2πR2. c. 1 mm is inside the wire and 3 mm is outside; 2 mm is at the surface (so the two results should be the same). Substitution gives B = 3.0 x 10-3 T at 1.0 mm, 6.0 x 10-3 T at 2.0 mm, and 4.0 x 10-3 T at 3.0 mm.

28-4 Ampère’s Law Conceptual Example 28-7: Coaxial cable. A coaxial cable is a single wire surrounded by a cylindrical metallic braid. The two conductors are separated by an insulator. The central wire carries current to the other end of the cable, and the outer braid carries the return current and is usually considered ground. Describe the magnetic field (a) in the space between the conductors, and (b) outside the cable. Solution: a. Between the conductors, the field is solely due to the inner conductor, and is that of a long straight wire. b. Outside the cable the field is zero.

28-4 Ampère’s Law Example 28-8: A nice use for Ampère’s law. Use Ampère’s law to show that in any region of space where there are no currents the magnetic field cannot be both unidirectional and non-uniform as shown in the figure. Solution: Use Ampère’s law to integrate around the path shown. The two vertical segments contribute zero to the integral, as the path is perpendicular to the field. The contributions from the horizontal segments would cancel if the field were uniform; if it is not, they don’t. This is inconsistent with Ampère’s law, as there is no current enclosed by the path.

28-4 Ampère’s Law Solving problems using Ampère’s law: Ampère’s law is only useful for solving problems when there is a great deal of symmetry. Identify the symmetry. Choose an integration path that reflects the symmetry (typically, the path is along lines where the field is constant and perpendicular to the field where it is changing). Use the symmetry to determine the direction of the field. Determine the enclosed current.