Department of Computer Science, University of Waikato, New Zealand Eibe Frank WEKA: A Machine Learning Toolkit The Explorer Classification and Regression Clustering Association Rules Attribute Selection Data Visualization The Experimenter The Knowledge Flow GUI Conclusions Machine Learning with WEKA
6/9/2015University of Waikato2 WEKA: the bird Copyright: Martin Kramer
6/9/2015University of Waikato3 WEKA: the software Machine learning/data mining software written in Java (distributed under the GNU Public License) Used for research, education, and applications Complements “Data Mining” by Witten & Frank Main features: Comprehensive set of data pre-processing tools, learning algorithms and evaluation methods Graphical user interfaces (incl. data visualization) Environment for comparing learning algorithms
6/9/2015University of Waikato4 WEKA: versions There are several versions of WEKA: WEKA 3.0: “book version” compatible with description in data mining book WEKA 3.2: “GUI version” adds graphical user interfaces (book version is command-line only) WEKA 3.3: “development version” with lots of improvements This talk is based on the latest snapshot of WEKA 3.3 (soon to be WEKA 3.4)
6/9/2015University of age sex { female, chest_pain_type { typ_angina, asympt, non_anginal, cholesterol exercise_induced_angina { no, class { present, 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present... WEKA only deals with “flat” files
6/9/2015University of age sex { female, chest_pain_type { typ_angina, asympt, non_anginal, cholesterol exercise_induced_angina { no, class { present, 63,male,typ_angina,233,no,not_present 67,male,asympt,286,yes,present 67,male,asympt,229,yes,present 38,female,non_anginal,?,no,not_present... WEKA only deals with “flat” files
6/9/2015University of Waikato7
6/9/2015University of Waikato8
6/9/2015University of Waikato9
6/9/2015University of Waikato10 Explorer: pre-processing the data Data can be imported from a file in various formats: ARFF, CSV, C4.5, binary Data can also be read from a URL or from an SQL database (using JDBC) Pre-processing tools in WEKA are called “filters” WEKA contains filters for: Discretization, normalization, resampling, attribute selection, transforming and combining attributes, …
6/9/2015University of Waikato11
6/9/2015University of Waikato12
6/9/2015University of Waikato13
6/9/2015University of Waikato14
6/9/2015University of Waikato15
6/9/2015University of Waikato16
6/9/2015University of Waikato17
6/9/2015University of Waikato18
6/9/2015University of Waikato19
6/9/2015University of Waikato20
6/9/2015University of Waikato21
6/9/2015University of Waikato22
6/9/2015University of Waikato23
6/9/2015University of Waikato24
6/9/2015University of Waikato25
6/9/2015University of Waikato26
6/9/2015University of Waikato27
6/9/2015University of Waikato28
6/9/2015University of Waikato29
6/9/2015University of Waikato30
6/9/2015University of Waikato31
6/9/2015University of Waikato32 Explorer: building “classifiers” Classifiers in WEKA are models for predicting nominal or numeric quantities Implemented learning schemes include: Decision trees and lists, instance-based classifiers, support vector machines, multi-layer perceptrons, logistic regression, Bayes’ nets, … “Meta”-classifiers include: Bagging, boosting, stacking, error-correcting output codes, locally weighted learning, …
6/9/2015University of Waikato33
6/9/2015University of Waikato34
6/9/2015University of Waikato35
6/9/2015University of Waikato36
6/9/2015University of Waikato37
6/9/2015University of Waikato38
6/9/2015University of Waikato39
6/9/2015University of Waikato40
6/9/2015University of Waikato41
6/9/2015University of Waikato42
6/9/2015University of Waikato43
6/9/2015University of Waikato44
6/9/2015University of Waikato45
6/9/2015University of Waikato46
6/9/2015University of Waikato47
6/9/2015University of Waikato48
6/9/2015University of Waikato49
6/9/2015University of Waikato50
6/9/2015University of Waikato51
6/9/2015University of Waikato52
6/9/2015University of Waikato53
6/9/2015University of Waikato54
6/9/2015University of Waikato55
6/9/2015University of Waikato56
6/9/2015University of Waikato57
6/9/2015University of Waikato58
6/9/2015University of Waikato59
6/9/2015University of Waikato60
6/9/2015University of Waikato61
6/9/2015University of Waikato62
6/9/2015University of Waikato63
6/9/2015University of Waikato64
6/9/2015University of Waikato65
6/9/2015University of Waikato66
6/9/2015University of Waikato67
6/9/2015University of Waikato68
6/9/2015University of Waikato69
6/9/2015University of Waikato70
6/9/2015University of Waikato71
6/9/2015University of Waikato72
6/9/2015University of Waikato73
6/9/2015University of Waikato74
6/9/2015University of Waikato75
6/9/2015University of Waikato76
6/9/2015University of Waikato77
6/9/2015University of Waikato78
6/9/2015University of Waikato79
6/9/2015University of Waikato80
6/9/2015University of Waikato81
6/9/2015University of Waikato82
6/9/2015University of Waikato83
6/9/2015University of Waikato84
6/9/2015University of Waikato85
6/9/2015University of Waikato86
6/9/2015University of Waikato87
6/9/2015University of Waikato88
6/9/2015University of Waikato89
6/9/2015University of Waikato90
6/9/2015University of Waikato91
6/9/2015University of Waikato92 Explorer: clustering data WEKA contains “clusterers” for finding groups of similar instances in a dataset Implemented schemes are: k-Means, EM, Cobweb, X-means, FarthestFirst Clusters can be visualized and compared to “true” clusters (if given) Evaluation based on loglikelihood if clustering scheme produces a probability distribution
6/9/2015University of Waikato93
6/9/2015University of Waikato94
6/9/2015University of Waikato95
6/9/2015University of Waikato96
6/9/2015University of Waikato97
6/9/2015University of Waikato98
6/9/2015University of Waikato99
6/9/2015University of Waikato100
6/9/2015University of Waikato101
6/9/2015University of Waikato102
6/9/2015University of Waikato103
6/9/2015University of Waikato104
6/9/2015University of Waikato105
6/9/2015University of Waikato106
6/9/2015University of Waikato107
6/9/2015University of Waikato108 Explorer: finding associations WEKA contains an implementation of the Apriori algorithm for learning association rules Works only with discrete data Can identify statistical dependencies between groups of attributes: milk, butter bread, eggs (with confidence 0.9 and support 2000) Apriori can compute all rules that have a given minimum support and exceed a given confidence
6/9/2015University of Waikato109
6/9/2015University of Waikato110
6/9/2015University of Waikato111
6/9/2015University of Waikato112
6/9/2015University of Waikato113
6/9/2015University of Waikato114
6/9/2015University of Waikato115
6/9/2015University of Waikato116 Explorer: attribute selection Panel that can be used to investigate which (subsets of) attributes are the most predictive ones Attribute selection methods contain two parts: A search method: best-first, forward selection, random, exhaustive, genetic algorithm, ranking An evaluation method: correlation-based, wrapper, information gain, chi-squared, … Very flexible: WEKA allows (almost) arbitrary combinations of these two
6/9/2015University of Waikato117
6/9/2015University of Waikato118
6/9/2015University of Waikato119
6/9/2015University of Waikato120
6/9/2015University of Waikato121
6/9/2015University of Waikato122
6/9/2015University of Waikato123
6/9/2015University of Waikato124
6/9/2015University of Waikato125 Explorer: data visualization Visualization very useful in practice: e.g. helps to determine difficulty of the learning problem WEKA can visualize single attributes (1-d) and pairs of attributes (2-d) To do: rotating 3-d visualizations (Xgobi-style) Color-coded class values “Jitter” option to deal with nominal attributes (and to detect “hidden” data points) “Zoom-in” function
6/9/2015University of Waikato126
6/9/2015University of Waikato127
6/9/2015University of Waikato128
6/9/2015University of Waikato129
6/9/2015University of Waikato130
6/9/2015University of Waikato131
6/9/2015University of Waikato132
6/9/2015University of Waikato133
6/9/2015University of Waikato134
6/9/2015University of Waikato135
6/9/2015University of Waikato136
6/9/2015University of Waikato137
6/9/2015University of Waikato138 Performing experiments Experimenter makes it easy to compare the performance of different learning schemes For classification and regression problems Results can be written into file or database Evaluation options: cross-validation, learning curve, hold-out Can also iterate over different parameter settings Significance-testing built in!
6/9/2015University of Waikato139
6/9/2015University of Waikato140
6/9/2015University of Waikato141
6/9/2015University of Waikato142
6/9/2015University of Waikato143
6/9/2015University of Waikato144
6/9/2015University of Waikato145
6/9/2015University of Waikato146
6/9/2015University of Waikato147
6/9/2015University of Waikato148
6/9/2015University of Waikato149
6/9/2015University of Waikato150
6/9/2015University of Waikato151
6/9/2015University of Waikato152 The Knowledge Flow GUI New graphical user interface for WEKA Java-Beans-based interface for setting up and running machine learning experiments Data sources, classifiers, etc. are beans and can be connected graphically Data “flows” through components: e.g., “data source” -> “filter” -> “classifier” -> “evaluator” Layouts can be saved and loaded again later
6/9/2015University of Waikato153
6/9/2015University of Waikato154
6/9/2015University of Waikato155
6/9/2015University of Waikato156
6/9/2015University of Waikato157
6/9/2015University of Waikato158
6/9/2015University of Waikato159
6/9/2015University of Waikato160
6/9/2015University of Waikato161
6/9/2015University of Waikato162
6/9/2015University of Waikato163
6/9/2015University of Waikato164
6/9/2015University of Waikato165
6/9/2015University of Waikato166
6/9/2015University of Waikato167
6/9/2015University of Waikato168
6/9/2015University of Waikato169
6/9/2015University of Waikato170
6/9/2015University of Waikato171
6/9/2015University of Waikato172
6/9/2015University of Waikato173 Conclusion: try it yourself! WEKA is available at Also has a list of projects based on WEKA WEKA contributors: Abdelaziz Mahoui, Alexander K. Seewald, Ashraf M. Kibriya, Bernhard Pfahringer, Brent Martin, Peter Flach, Eibe Frank,Gabi Schmidberger,Ian H. Witten, J. Lindgren, Janice Boughton, Jason Wells, Len Trigg, Lucio de Souza Coelho, Malcolm Ware, Mark Hall,Remco Bouckaert, Richard Kirkby, Shane Butler, Shane Legg, Stuart Inglis, Sylvain Roy, Tony Voyle, Xin Xu, Yong Wang, Zhihai Wang