INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, 2004 Lecture Slides for.

Slides:



Advertisements
Similar presentations
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) ETHEM ALPAYDIN © The MIT Press, 2010
Advertisements

INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning 2nd Edition
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
1 Machine Learning: Lecture 10 Unsupervised Learning (Based on Chapter 9 of Nilsson, N., Introduction to Machine Learning, 1996)
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning 3rd Edition
Supervised Learning Recap
Neural Networks Chapter 9 Joost N. Kok Universiteit Leiden.
Lecture 17: Supervised Learning Recap Machine Learning April 6, 2010.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning 2nd Edition
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
MACHINE LEARNING 9. Nonparametric Methods. Introduction Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 
01 -1 Lecture 01 Artificial Intelligence Topics –Introduction –Knowledge representation –Knowledge reasoning –Machine learning –Applications.
Radial Basis Function Networks 표현아 Computer Science, KAIST.
Supervised learning: Mixture Of Experts (MOE) Network.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
MACHINE LEARNING 12. Multilayer Perceptrons. Neural Networks Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)
Hazırlayan NEURAL NETWORKS Radial Basis Function Networks I PROF. DR. YUSUF OYSAL.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for.
Aula 4 Radial Basis Function Networks
02 -1 Lecture 02 Agent Technology Topics –Introduction –Agent Reasoning –Agent Learning –Ontology Engineering –User Modeling –Mobile Agents –Multi-Agent.
Hazırlayan NEURAL NETWORKS Radial Basis Function Networks II PROF. DR. YUSUF OYSAL.
8/10/ RBF NetworksM.W. Mak Radial Basis Function Networks 1. Introduction 2. Finding RBF Parameters 3. Decision Surface of RBF Networks 4. Comparison.
For Better Accuracy Eick: Ensemble Learning
CHAPTER 7: Clustering Eick: K-Means and EM (modified Alpaydin transparencies and new transparencies added) Last updated: February 25, 2014.
MACHINE LEARNING 8. Clustering. Motivation Based on E ALPAYDIN 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2  Classification problem:
Neural Networks - Lecture 81 Unsupervised competitive learning Particularities of unsupervised learning Data clustering Neural networks for clustering.
IE 585 Competitive Network – Learning Vector Quantization & Counterpropagation.
MACHINE LEARNING 10 Decision Trees. Motivation  Parametric Estimation  Assume model for class probability or regression  Estimate parameters from all.
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
Radial Basis Function ANN, an alternative to back propagation, uses clustering of examples in the training set.
Clustering Instructor: Max Welling ICS 178 Machine Learning & Data Mining.
Fast Learning in Networks of Locally-Tuned Processing Units John Moody and Christian J. Darken Yale Computer Science Neural Computation 1, (1989)
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
CHAPTER 14 Competitive Networks Ming-Feng Yeh.
… Algo 1 Algo 2 Algo 3 Algo N Meta-Learning Algo.
CSC321: Introduction to Neural Networks and Machine Learning Lecture 15: Mixtures of Experts Geoffrey Hinton.
Hierarchical Mixture of Experts Presented by Qi An Machine learning reading group Duke University 07/15/2005.
Supervised Learning – Network is presented with the input and the desired output. – Uses a set of inputs for which the desired outputs results / classes.
INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN © The MIT Press, Lecture.
Machine Learning 12. Local Models.
Machine Learning Supervised Learning Classification and Regression
INTRODUCTION TO Machine Learning
Combining Base Learners
Neuro-Computing Lecture 4 Radial Basis Function Network
Chap 8: Adaptive Networks
INTRODUCTION TO Machine Learning
CSCE833 Machine Learning Lecture 9 Linear Discriminant Analysis
INTRODUCTION TO Machine Learning
INTRODUCTION TO Machine Learning 2nd Edition
INTRODUCTION TO Machine Learning 3rd Edition
Radial Basis Functions: Alternative to Back Propagation
Linear Discrimination
Presentation transcript:

INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, Lecture Slides for

CHAPTER 12: Local Models

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 3 Introduction Divide the input space into local regions and learn simple (constant/linear) models in each patch Unsupervised: Competitive, online clustering Supervised: Radial-basis func, mixture of experts

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 4 Competitive Learning

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 5 Winner-take-all network

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 6 Adaptive Resonance Theory Incremental; add a new cluster if not covered; defined by vigilance, ρ (Carpenter and Grossberg, 1988)

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 7 Self-Organizing Maps Units have a neighborhood defined; m i is “between” m i-1 and m i+1, and are all updated together One-dim map: (Kohonen, 1990)

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 8 Radial-Basis Functions Locally-tuned units:

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 9 Local vs Distributed Representation

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 10 Training RBF Hybrid learning:  First layer centers and spreads: Unsupervised k-means  Second layer weights: Supervised gradient-descent Fully supervised (Broomhead and Lowe, 1988; Moody and Darken, 1989)

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 11 Regression

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 12 Classification

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 13 Rules and Exceptions Default rule Exceptions

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 14 Rule-Based Knowledge Incorporation of prior knowledge (before training) Rule extraction (after training) (Tresp et al., 1997) Fuzzy membership functions and fuzzy rules

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 15 Normalized Basis Functions

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 16 Competitive Basis Functions Mixture model:

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 17 Regression

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 18 Classification

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 19 EM for RBF (Supervised EM) E-step: M-step:

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 20 Learning Vector Quantization H units per class prelabeled (Kohonen, 1990) Given x, m i is the closest: x mimi mjmj

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 21 Mixture of Experts In RBF, each local fit is a constant, w ih, second layer weight In MoE, each local fit is a linear function of x, a local expert: (Jacobs et al., 1991)

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 22 MoE as Models Combined Radial gating: Softmax gating:

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 23 Cooperative MoE Regression

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 24 Competitive MoE: Regression

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 25 Competitive MoE: Classification

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 26 Hierarchical Mixture of Experts Tree of MoE where each MoE is an expert in a higher-level MoE Soft decision tree: Takes a weighted (gating) average of all leaves (experts), as opposed to using a single path and a single leaf Can be trained using EM (Jordan and Jacobs, 1994)