Shading in OpenGL CS4395: Computer Graphics 1 Mohan Sridharan Based on slides created by Edward Angel.

Slides:



Advertisements
Similar presentations
Computer Graphics Shading Lecture 13 John Shearer
Advertisements

Polygon Rendering Flat Rendering Goraud Rendering Uses Phong Reflectance Phong Rendering.
2 COEN Computer Graphics I Evening’s Goals n Discuss the fundamentals of lighting in computer graphics n Analyze OpenGL’s lighting model n Show.
CSPC 352: Computer Graphics
Virtual Realism LIGHTING AND SHADING. Lighting & Shading Approximate physical reality Ray tracing: Follow light rays through a scene Accurate, but expensive.
1 MAE152 Computer Graphics for Scientists and Engineers Lighting in OpenGL.
Illumination and Shading
Based on slides created by Edward Angel
Computer Graphics - Class 10
Shading in OpenGL Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico.
Now Playing: Multiply Jamie Lidell from Multiply Released June 13, 2005.
CS5500 Computer Graphics March 26, Shading Reference: Ed Angel’s book.
Computer Graphics (Spring 2008) COMS 4160, Lecture 14: OpenGL 3
Illumination and Shading
Illumination and Shading. Illumination (Lighting) Model the interaction of light with surface points to determine their final color and brightness OpenGL.
Computer Graphics Lighting.
Display Issues Week 5 David Breen Department of Computer Science
1 Graphics CSCI 343, Fall 2013 Lecture 20 Lighting and Shading III.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Chapter 6: Shading Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
Illumination & Reflectance Dr. Amy Zhang. Outline 2  Illumination and Reflectance  The Phong Reflectance Model  Shading in OpenGL.
Shading in OpenGL.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
1 Chapter 6 Shading. 2 Objectives Learn to shade objects so their images appear three-dimensional Introduce the types of light-material interactions Build.
19/17/ :25 UML Graphics: Conceptual Model Real Object Human Eye Display Device Graphics System Synthetic Model Synthetic Camera Real Light Synthetic.
Shading 03/19/2003. Lighting Principles Lighting based on how objects reflect light –Surface characteristics –Light color and direction –Global lighting.
Illumination and Shading Angel, Chapter 6 slides from AW, etc.
Shading and Illumination. OpenGL Shading Without ShadingWith Shading.
Illumination and Shading Angel, Chapter 5 slides from AW, etc.
Computer Graphics I, Fall 2010 Shading in OpenGL.
Lecture 9: Lighting and Shading 1  Principles of Interactive Graphics  CMSCD2012  Dr David England, Room 718,  ex 2271
Lecture 14 Shading models 1.Shading Constant Shading (to be implemented) Gouraud Shading Phong Shading 2.Light and shading with OpenGL 1.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Shading I Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
CG Summary: OpenGL Shading andTextures Angel, Chapters 5, 7; “Red Book” slides from AW, red book, etc. CSCI 6360/4360.
Chi-Cheng Lin, Winona State University CS430 Computer Graphics Lighting and Shading Part II.
OpenGL Color and Lighting 2003 Spring Keng Shih-Ling.
OpenGL Lighting Jian-Liang Lin 2002 Hidden-Surface Removal -1 Original Code: while (1) { get_viewing_point_from_mouse_position(); glClear(GL_COLOR_BUFFER_BIT);
Shading in OpenGL Ed Angel Professor Emeritus of Computer Science University of New Mexico 1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E.
COMPUTER GRAPHICS Hochiminh city University of Technology Faculty of Computer Science and Engineering CHAPTER 6: Lighting and Shading.
Shading in OpenGL Shandong University Software College Instructor: Zhou Yuanfeng
Lecture Fall 2001 Illumination and Shading in OpenGL Light Sources Empirical Illumination Shading Transforming Normals Tong-Yee Lee.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
11/5/2002 (c) University of Wisconsin, CS 559 Last Time Local Shading –Diffuse term –Specular term –All together –OpenGL brief overview.
Where We Stand So far we know how to: –Transform between spaces –Rasterize –Decide what’s in front Next –Deciding its intensity and color.
Lighting and Shading Part 2. Global Ambient Light There are at least 8 OpenGL lights and 1 Global Ambient Setting the Global Ambient globalAmbient[] =
Lighting Dave Shreiner. 2 Lighting Principles Lighting simulates how objects reflect light Lighting simulates how objects reflect light material composition.
Lighting and Reflection Angel Angel: Interactive Computer Graphics5E © Addison-Wesley
Shading NOTE: Some of these slides are from Ed Angel’s presentation at SIGGRAPH February 27, 2008.
Illumination Models and Surface-Rendering Methods CEng 477 Introduction to Computer Graphics.
C O M P U T E R G R A P H I C S Guoying Zhao 1 / 55 C O M P U T E R G R A P H I C S Guoying Zhao 1 / 55 Computer Graphics Three-Dimensional Graphics V.
Graphics Graphics Korea University kucg.korea.ac.kr 1 Lights & Material 고려대학교 컴퓨터 그래픽스 연구실.
CSC Graphics Programming
Shading To determine the correct shades of color on the surface of graphical objects.
@ 2017 by Jim X. Chen George Mason University
CSC461: Lecture 23 Shading Computation
Vectors, Normals, & Shading
Shading in OpenGL Ed Angel
Introduction to Computer Graphics with WebGL
CSC461: Lecture 24 Lighting and Shading in OpenGL
Lighting Phong's Lighting Model normals
Illumination and Shading
Lighting and Materials
Introduction to Computer Graphics with WebGL
CS5500 Computer Graphics April 10, 2006.
Introduction to Computer Graphics with WebGL
Last Time Liang-Barsky Details Weiler-Atherton clipping algorithm
Computer Graphics Shading in OpenGL
Shading in OpenGL Ed Angel Professor Emeritus of Computer Science
Computer Graphics Shading 紀明德
Presentation transcript:

Shading in OpenGL CS4395: Computer Graphics 1 Mohan Sridharan Based on slides created by Edward Angel

Objectives Introduce the OpenGL shading functions. Discuss polygonal shading: – Flat. – Smooth. – Gouraud. CS4395: Computer Graphics 2

Steps in OpenGL shading 1.Enable shading and select model. 2.Specify normals. 3.Specify material properties. 4.Specify lights. CS4395: Computer Graphics 3

Normals In OpenGL the normal vector is part of the state. Set by glNormal*(): – glNormal3f(x, y, z); – glNormal3fv(p); Normal of unit length so cosine calculations are correct: – Length can be affected by transformations. – Note that scaling does not preserve length. – glEnable(GL_NORMALIZE) allows for auto-normalization at a performance penalty. CS4395: Computer Graphics 4

Normal for Triangle p1p1 CS4395: Computer Graphics 5 p0p0 p2p2 n plane n ·(p - p 0 ) = 0 n = (p 2 - p 0 ) ×(p 1 - p 0 ) normalize n  n/ |n| p Note that right-hand rule determines outward face!

Enabling Shading Shading calculations are enabled by: – glEnable(GL_LIGHTING) – Once lighting is enabled, glColor() is ignored. Must enable each light source individually: – glEnable(GL_LIGHTi) i=0,1….. Choose light model parameters: glLightModel i (parameter, GL_TRUE) GL_LIGHT_MODEL_LOCAL_VIEWER does not use simplifying distant viewer assumption in calculation. GL_LIGHT_MODEL_TWO_SIDED shades both sides of polygons independently. CS4395: Computer Graphics 6

Defining a Point Light Source For each light source, we can set an RGBA for the diffuse, specular, and ambient components, and for the position: CS4395: Computer Graphics 7 GLfloat diffuse0[]={1.0, 0.0, 0.0, 1.0}; GLfloat ambient0[]={1.0, 0.0, 0.0, 1.0}; GLfloat specular0[]={1.0, 1.0, 1.0, 1.0}; Glfloat light0_pos[]={1.0, 2.0, 3,0, 1.0}; glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glLightv(GL_LIGHT0, GL_POSITION, light0_pos); glLightv(GL_LIGHT0, GL_AMBIENT, ambient0); glLightv(GL_LIGHT0, GL_DIFFUSE, diffuse0); glLightv(GL_LIGHT0, GL_SPECULAR, specular0);

Distance and Direction The source colors are specified in RGBA. The position is given in homogeneous coordinates: – If w =1.0, specifying a finite location. – If w =0.0, specifying a parallel source with the given direction vector. The distance term coefficients are by default a=1.0 (constant terms), b=c=0.0 (linear and quadratic terms). Change by: CS4395: Computer Graphics 8 a = 0.80, b = 0.0, c = 0.5; glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a); glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, b); glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c);

Spotlights Use glLightv to set : – Direction: GL_SPOT_DIRECTION – Cutoff: GL_SPOT_CUTOFF – Attenuation: GL_SPOT_EXPONENT Proportional to cos   CS4395: Computer Graphics 9   

Global Ambient Light Ambient light depends on color of light sources: – A red light in a white room will cause a red ambient term that disappears when the light is turned off! OpenGL also allows a global ambient term that is often helpful for testing: – glLightModelfv(GL_LIGHT_MODEL_AMBIENT, global_ambient) CS4395: Computer Graphics 10

Moving Light Sources Light sources are geometric objects whose positions or directions are affected by the model-view matrix. Depending on where we place the position (direction) setting function, we can: – Move the light source(s) with the object(s). – Fix the object(s) and move the light source(s). – Fix the light source(s) and move the object(s). – Move the light source(s) and object(s) independently. CS4395: Computer Graphics 11

Material Properties Material properties are also part of the OpenGL state and match the terms in the modified Phong model. Set by glMaterialv(): CS4395: Computer Graphics 12 GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0}; GLfloat diffuse[] = {1.0, 0.8, 0.0, 1.0}; GLfloat specular[] = {1.0, 1.0, 1.0, 1.0}; GLfloat shine = glMaterialf(GL_FRONT, GL_AMBIENT, ambient); glMaterialf(GL_FRONT, GL_DIFFUSE, diffuse); glMaterialf(GL_FRONT, GL_SPECULAR, specular); glMaterialf(GL_FRONT, GL_SHININESS, shine);

Front and Back Faces The default is shade only front faces which works correctly for convex objects. If we set two sided lighting, OpenGL will shade both sides of a surface Each side can have its own properties which are set by using GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK in glMaterialf() CS4395: Computer Graphics 13 back faces not visibleback faces visible

Emissive Term We can simulate a light source in OpenGL by giving a material an emissive component. This component is unaffected by sources or transformations. CS4395: Computer Graphics 14 GLfloat emission[] = 0.0, 0.3, 0.3, 1.0); glMaterialf(GL_FRONT, GL_EMISSION, emission);

Transparency Material properties are specified as RGBA values. The A value can be used to make the surface translucent. The default is that all surfaces are opaque regardless of A. Later we will enable blending and use this feature. CS4395: Computer Graphics 15

Efficiency Since material properties are part of the state, changing materials for many surfaces can affect performance  We can make the code cleaner by defining a material structure and setting all materials during initialization: We can then select a material by a pointer. CS4395: Computer Graphics 16 typedef struct materialStruct { GLfloat ambient[4]; GLfloat diffuse[4]; GLfloat specular[4]; GLfloat shininess; } MaterialStruct;

Polygonal Shading Shading calculations are done for each vertex: – Vertex colors become vertex shades. By default, vertex shades are interpolated across the polygon: – glShadeModel(GL_SMOOTH); If we use glShadeModel(GL_FLAT) the color at the first vertex will determine the shade of the whole polygon. CS4395: Computer Graphics 17

Polygon Normals Polygons have a single normal: – Shades at vertices (computed by Phong model) can be almost same. – Identical for a distant viewer (default) or if there is no specular component. Consider model of sphere. Want different normals at each vertex even though this concept is not quite correct mathematically. CS4395: Computer Graphics 18

Smooth Shading We can set a new normal at each vertex. Easy for sphere model: – If centered at origin n = p. Now smooth shading works. Note silhouette edge. CS4395: Computer Graphics 19

Mesh Shading The previous example is not general because we computed the normal at each vertex analytically. For polygonal models, Gouraud proposed the use of the average of the normals around a mesh vertex. CS4395: Computer Graphics 20 n = (n 1 +n 2 +n 3 +n 4 )/ |n 1 +n 2 +n 3 +n 4 |

Gouraud and Phong Shading Gouraud Shading: – Find average normal at each vertex (vertex normals). – Apply modified Phong model at each vertex. – Interpolate vertex shades across each polygon. Phong shading: – Find vertex normals. – Interpolate vertex normals across edges. – Interpolate edge normals across polygon. – Apply modified Phong model at each fragment. CS4395: Computer Graphics 21

Comparison If the polygon mesh approximates surfaces with a high curvatures, Phong shading may look smooth while Gouraud shading may show edges. Phong shading requires more work than Gouraud shading: – Until recently not available in real time systems. – Now can be done using fragment shaders (Chapter 9). Both need data structures to represent meshes so we can obtain vertex normals. CS4395: Computer Graphics 22