DESIGN OF TRUSS ROOF Chapter 7

Slides:



Advertisements
Similar presentations
Appreciation of Loads and Roof Truss Design
Advertisements

Roofs are one of a building’s primary elements and play a major part in giving a building its character. There are several different types of roof in.
Design of Steel Tension Members
Gable Roofs and Components
DESIGN OF TRUSS ROOF Chapter 7
2.2 STRUCTURAL ELEMENT BEAM
2.2 STRUCTURAL ELEMENT Reinforced Concrete Slabs
The Structure and Materials of Roofing. Roof structures Although, theorists tried, most roofs until the 20 th century involved a sloping pitch. 40˚ or.
Chp12- Footings.
Gable Roof BCGCA3007B.
By : Prof.Dr.\Nabil Mahmoud
ANALYSIS OF TWO-WAY SLABS WITH BEAMS
DESIGN OF STRUCTURAL MEMBERS
ONE-WAY SLAB. ONE-WAY SLAB Introduction A slab is structural element whose thickness is small compared to its own length and width. Slabs are usually.
Design of Tension Members
Lesson Review Roof Trusses M. S. Martin – Nov
CIVL3310 STRUCTURAL ANALYSIS
CTC 422 Design of Steel Structures
Design of Tension Members

UNIT-I STANDARD SPECIFICATION FOR ROAD BRIDGE
Reinforced Concrete Design II
DESIGN OF TRUSS ROOF Chapter 7 University of Engineering & Technology, Taxila 1Prof Dr Z. A. Siddiqi.
Design of Tension Members
Concrete (Gravity) Dam Engineering
DESIGN OF TRUSS ROOF Chapter 7
COLUMNS. COLUMNS Introduction According to ACI Code 2.1, a structural element with a ratio of height-to least lateral dimension exceeding three used.
Metals. Introduction u Metal is used in various places in the construction process including: –rebar = reinforcing steel in round shapes –flashing = thin.
Chapter 6 Plate girder.
University of Palestine
ERT352 FARM STRUCTURES TRUSS DESIGN
BEAMS AND COLUMNS PRESENTED BY K.ROSHIN RUKSHANA.
FOOTINGS. FOOTINGS Introduction Footings are structural elements that transmit column or wall loads to the underlying soil below the structure. Footings.
ANALYSIS OF STATICALLY DETERMINATE TRUSSES
Wind Turbine Support Structure Benjamin Boyett ET 493 Senior Design I Advisor – Dr Mohamed Zeidan Instructor - Dr. Cris Koutsougeras 05/09/2014.
7. APPROXIMATE ANALYSIS OF INDETERMINATE STRUCTURES
Session 15 – 16 SHEET PILE STRUCTURES
Tulkarem Multipurpose Sport Hall Prepared by: Moatasem Ghanim Abdul-Rahman Alsaabneh Malek Salatneh Supervisor: Dr. Shaker Albitar.
Moment Connection Requires Bolts Outside the Flanges
Lecture 15 - Timber Wall Framing Example
1 Wardenier “Tubular Structures Course” Examples Hollow Section Trusses Design Procedure.
LOAD FACTORS AND LOAD COMBINATION
BFC (Mechanics of Materials) Chapter 7: Statically Determinate Plane Trusses Shahrul Niza Mokhatar
CESL Hotel Unique – Toronto Chris O’Brien Eric Fraser Scotia Mabury
Concepts embedded in the draft IS:800 for Compression members
Building Construction
Built-up Compression Members
Comparative Study of Chord forces in Flat Slabs due to Seismic loads in buildings of different plan aspect ratios Aman Gupta (B.Tech. student) Dr. S. Mandal.
Truss Roof By PATEL POOJA D.
Pitched Roof By PATEL ANKITKUMAR H.
SECTION 8 - RACKING (BRACING) AND SHEAR FORCES STUDENT HANDOUT
ERT352 FARM STRUCTURES TRUSS DESIGN
Compression Members.
Outline: Introduction: a ) General description of project b) Materials
SeminAR ON LINTELS --SANTHOSHKUMAR.M..,.
Chapter-2 Parts of Steel Bridges.
Roofs: Types of roofs, Trussed roofs, Steel roof truss
Arch205 Material and building construction 1 floor & Roof systems
DESIGN OF TRUSS ROOF Chapter 7
Arch205 building construction floor & Roof systems
Arch205 building construction floor & Roof systems
DESIGN OF TRUSS ROOF Chapter 7
G.B.N GOVT. POLYTECHNIC, NILOKHERI
DEPARTMENT OF CIVIL ENGIEERING (RAJKIYA ENGINEERING COLLEGE, MAINPURI) Page No - 1.
CONNECTION Prepared by : Shamilah
EAT 415 :ADVANCED STEEL BUILDING DESIGN PLATE GIRDER
ROOFS.
LOAD ANALYSIS OF RIGID FRAMES
Chapter 13 Concrete Form Design.
Analysis of Perfect Frames (Analytical Method)
Presentation transcript:

DESIGN OF TRUSS ROOF Chapter 7 University of Engineering & Technology, Taxila Prof Dr Z. A. Siddiqi

LOADS ON TRUSS ROOF All the gravity or vertical loads acting on the building trusses are first calculated in terms of the loads acting per one square meter of the horizontally projected area (plan area) having the units kg/m2, N/m2 or kN/m2. The wind loads are calculated per square meter of the actual inclined roof surface in the same units. Prof Dr Z. A. Siddiqi

Dead Loads Dead load is the self weight of different components of the structure itself. Its magnitude and point of application does not appreciably change with time. Dead load on a truss will comprise of loads of roof coverings, perpendicularly running beams (purlins), connections, supporting elements (braces) and self load of the truss. Prof Dr Z. A. Siddiqi

Superimposed Loads All the loads externally acting on the structure leaving its own weight are called superimposed loads. The expected maximum loads are called service loads and the design loads for LRFD method are the loads obtained after multiplying with the appropriate load factors. Live load, wind load, snow load and earthquake load are all examples of superimposed loads. Prof Dr Z. A. Siddiqi

Dead Loads of Truss Roof Components The weights of various structural components per unit plan area are as follows: a Asbestos cement concrete sheets (corrugated) 15 – 30 kg/m2 b Corrugated galvanized iron sheets 6 – 30 c Lightweight R.C. slabs, 60 – 90 mm thick 120 – 200 d Slate, Gypsum and other tiles 35 – 40 e Glazing 6 mm or wire woven glass 25 – 30 f Tar & gravel roofing 40 – 50 g Insulation boards 5 – 8 h Purlins For slate roof 15 – 20 For glazed roof 9 – 14 For corrugated sheeting 8 – 13 i Bracings 2 – 6 j Miscellaneous 5 – 7 k Self-weight of truss 10 – 25 Prof Dr Z. A. Siddiqi

whereas for all other cases, the following formula may be used To obtain a better estimate of the truss self-weight for a 4 m spacing of trusses and a pitch of 1/4 to 1/5 with corrugated sheeting, weight per unit area of plan may be taken as whereas for all other cases, the following formula may be used Thayer Formula Prof Dr Z. A. Siddiqi

W = weight of truss (kg/m2) where W = weight of truss (kg/m2) w = Total load per horizontal plan acting on the truss (kg/m2) S = spacing of truss (m) L = span of the truss (m) Prof Dr Z. A. Siddiqi

Snow Loads Snow load is calculated according to maximum expected depth of snow in a particular locality and density of snow. Maximum density of snow = 786 kg/m3 The density of snow significantly varies with the amount of compactness. Prof Dr Z. A. Siddiqi

Live Load (or Minimum Snow Load) The minimum live load for various situations is given below: 100 kg/m2 for θ ≤ 10° for no access to roof 200 kg/m2 for θ ≤ 10° when access to roof (113-1.3θ) kg/m2 for 10°< θ ≤ 20° (143-2.8θ)kg/m2 for 20°< θ ≤ 30° 60 kg/m2 for θ > 30° Prof Dr Z. A. Siddiqi

Wind Load Windward side – face towards wind Leeward side – face opposite to wind Windward side Leeward side θ Wind Direction Prof Dr Z. A. Siddiqi

Design wind pressure P = Ce Cq qs Iw where Ce is the combined height, exposure and gust coefficient In open areas and for height up to 10 m Ce= 1.25 10 to 20m Ce= 1.45 20 to 30 m Ce= 1.61 qs = wind stagnation pressure at st. height of 10 m. = 0.0475V2 (N/m2) where V= basic wind velocity in km/h Iw= 1.0 for ordinary buildings Prof Dr Z. A. Siddiqi

for V=145 km/h and height up to 10m in open areas P = 1250 Cq (N/m2) for V=145 km/h and height up to 10m in open areas Value of Pressure Coefficient (Cq) Windward roof θ = 0° to 9.5° Cq = 0.7 outward (-) 9.5° to 37° Cq = 0.9 outward or 0.3 inward (+) 37° to 45° 0.4 inward >45° 0.7 inward Prof Dr Z. A. Siddiqi

Leeward or flat roof 0.7 outward (-) Windward walls 0.8 inward up to 6m height 0.87 inward for 6 to 12m height 1.0 inward for 12 to 18m height Leeward walls 0.5 outward up to 6m height 0.54 outward for 6 to 12m height 0.63 outward for 12 to 18 height Prof Dr Z. A. Siddiqi

SELECTION OF MEMBERS OF ROOF TRUSS For riveted and bolted trusses a pair of angles back-to- back is the most common type of member. For short spans and lightly loaded trusses, a single angle is sometimes used, mainly for tension members. Equal and unequal angles both should be checked and that angle should be selected which satisfies minimum weight and slenderness requirements. It should be remembered that the single angle member does have the disadvantage of eccentricity and should properly be considered in the design of these members. Prof Dr Z. A. Siddiqi

SELECTION OF MEMBERS OF ROOF TRUSS For larger riveted or bolted roof trusses T, W, M, S, or two channels back-to-back sections may be used for some of the members. The two sections of the members are connected at intervals by filler plates (stay plates) with welding or riveting to give slenderness ratio of single section (where the two sections are not joined) lesser than the slenderness ratio of the double section. Prof Dr Z. A. Siddiqi

SELECTION OF MEMBERS OF ROOF TRUSS A minimum size member for practical reasons to avoid too flimsy sections is often L51 х 51 х 6.4 or an equal area equal to this section. An effort should be made to limit the width of the truss members because it has been found that trusses with very wide members tend to have very large secondary forces. If structural T is used as top chord member for a welded truss, gusset plates may be unnecessary for top chord and web members can be welded directly to the stems of tees. Prof Dr Z. A. Siddiqi

SELECTION OF MEMBERS OF ROOF TRUSS The chord members of roof trusses often consist of one section which is continuous through several panel points. This may be designed for the maximum force in any of the parts in which it is continuous. This practice may seem to be uneconomical, but considering the resulting saving in the cost of the splices, the result may be an economical design. If splices have to be made at certain points for shipping or handling purposes, sizes may be economically changed at those points. Prof Dr Z. A. Siddiqi

Selection of Truss Members using Angle Sections For top chord members which are adjacent to each other and have a force up to 25% lesser than the maximum out of these members, same section could be used which is designed for the maximum force member. However, for all other top chord members, same depth section should be selected. Same procedure applies to bottom chord members. Prof Dr Z. A. Siddiqi

Selection of Truss Members using Angle Sections The corresponding members on left and right of the truss should be designed for maximum force because the hinge and roller support may be used on windward or leeward side. All top and bottom chord members should be double angles. All compression members should be double angles. Web tension members may be single or double angles depending upon the magnitude of force. Prof Dr Z. A. Siddiqi

Selection of Truss Members using Angle Sections Zero force members should be single angles. Stay plates spacing should be calculated for all double angle sections. 4 4 5 5 3 3 1 1 2 6 2 Correspondence of Truss Members for Design Prof Dr Z. A. Siddiqi

Thank You