Mikhail Bashkanov Dibaryons at COSY Wasa-at-COSY.

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Hadron physics with GeV photons at SPring-8/LEPS II
Possible existence of neutral hyper-nucleus with strangeness -2 and its production SPN 2014, Changsha, Dec , 2014 Institute of High Energy Physics.
5-quark components in baryons Bing-Song Zou Institute of High Energy Physics Beijing.
“Exotic” hadron-hadron S-wave Interaction Bing-song Zou IHEP, Beijing.
1 5-quark components in baryons and evidence at BES Bing-Song Zou Institute of High Energy Physics Beijing.
Study of few-body problems at WASA Wasa-at-Cosy. Content General overview General overview –  decays – dd   0 –  -mesic helium The ABC effect The.
N*(2007) observed at LNS Sendai H. Shimizu Laboratory of Nuclear Science Tohoku University Sendai NSTAR2007, Sep.5-8, 2007, Bonn 1670.
Excitation of the Roper Resonance in Single- and Double-Pion Production in NN collisions Roper‘s resonance Roper‘s resonance a resonance without seeing.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Low-x Wshop, , Prague Jan Hladký, Exotic Anti-Charm Baryon State 1 Evidence for a Narrow Exotic Anti-Charmed Baryon State *) Jan Hladký, Institute.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Hartmut Machner, MENU04 Beijing 1 Physics at COSY - up to 3.6 GeV/c - e and stochastic cooling, - stochastic extraction (10 s - min) - luminosity achieved:
Photodisintegration of Few-Body Nuclei Ron Gilman Rutgers / Jefferson Lab What have we learned? What might we learn? Jefferson Lab User Group The Next.
Exclusive Production of Hadron Pairs in Two-Photon Interactions Bertrand Echenard University of Geneva on behalf of the LEP collaborations Hadronic Physics.
The role of anomalous triangle singularity in the understanding of threshold phenomena XVI International Conference on Hadron Spectroscopy September 13-18,
Hadrons in the Nuclear Medium. I. QCD dynamics of Hadron-Hadron Interaction I. QCD dynamics of Hadron-Hadron Interaction IV. Protons in the Superdense.
Mikhail Bashkanov Encounters with Di-Baryons from the ABC-effect to a Resonance in the Proton-Neutron System Wasa-at-COSY.
A discovery of the Di-baryon state with Wasa-at-COSY
Molecular Charmonium. A new Spectroscopy? II Russian-Spanish Congress Particle and Nuclear Physics at all Scales and Cosmology F. Fernandez D.R. Entem,
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Meson Assisted Baryon-Baryon Interaction Hartmut Machner Fakultät für Physik Universität Duisburg-Essen Why is this important? NN interactions  Nuclear.
New Interpretation of the ABC Effect in Two-Pion Production in NN collisions Maria Platonova Lomonosov Moscow State University The 22 nd European Conference.
M. Cobal, PIF 2003 Resonances - If cross section for muon pairs is plotted one find the 1/s dependence -In the hadronic final state this trend is broken.
1 On extraction of the total photoabsorption cross section on the neutron from data on the deuteron  Motivation: GRAAL experiment (proton, deuteron) 
Hadronic Resonances Evgeni Kolomeitsev, Matej Bel University.
X(3872) production in high energy collisions University of São Paulo F.S. Navarra Introduction : exotic hadrons Production in pp and AA XIII International.
New Narrow Nucleon Resonance N*(1685) „Neutron anomaly“ in eta photoproduction: GRAAL, CB/TAPS, LNS-Tohoku Interpretations of the neutron anomaly Evidence.
Nstars: Open Questions Nstars: Open Questions L. Tiator, Institut für Kernphysik, Universität Mainz  Introduction  Roper and S 11  the role of the D.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
BLINDBILD Resonance Multiplets in the Two-Baryon System --- Dibaryons Revisited MesonNet Meeting Prague, June , 2013 Heinz Clement Fachbereich Physik.
The d* dibaryon structure and the hidden color channel effect Jia-lun Ping, Hong-xia Huang Dept. of Physics, Nanjing Normal University Fan Wang Dept. of.
NSTAR2011, Jefferson Lab, USA May 17-20, 2011 Mitglied der Helmholtz-Gemeinschaft Tamer Tolba for the WASA-at-COSY collaboration Institut für Kernphysik.
I=1 heavy-light tetraquarks and the Υ(mS) → Υ(nS)ππ puzzle Francisco Fernández Instituto de Física Fundamental y Matemáticas University of Salamanca.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Stephen Lars Olsen Seoul National University February 10, 2014 A New Spectroscopy of Hadrons High-1 Gangwando.
Evidence for a new resonance S *(1380) with J P =1/2  JiaJun WU In collaboration with S. Dulat and B. S. ZOU.
CELSIUS-WASA,WASA-at-COSY: two-pion production in NN collisions T. Skorodko, Physikalisches Institut, Univ.Tubingen.
Systematic study of two-pion production in NN collisions – from single-baryon to di-baryon excitations T. Skorodko, Physikalisches Institut, Univ.Tubingen.
Study of nucleon resonances at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz, T.-S. H.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
The pp→pp  0  0 reaction and its limiting case, the fusion to quasibound, in search of ABC effect T. Skorodko, University Tuebingen for CELSIUS-WASA.
Double-Pionic Fusion in Nucleon Collisions on Few Body Systems - The ABC Effect and its Possible Origin Wasa-at-Cosy Celsius Wasa.
Satoshi Nakamura (Osaka University)
Extracting h-neutron interaction from g d  h n p data
The study of pentaquark states in the unitary chiral approach
Three-body hadronic molecules.
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Remarks on the hidden-color component
Photoproduction of K* for the study of L(1405)
The dibaryon d* in quark models
Dibaryon production and structure
N*ews from COSY May 2011 | Hans Ströher (Forschungszentrum Jülich, Germany)
Dibaryons at CLAS Mikhail Bashkanov.
d*, a quark model perspective
On a Search for -Mesic Nuclei at MAMI-C
Shedding light on Hexaquarks
N* Program at COSY April 19, 2009 | Hans Ströher (FZ-Jülich)
Charmonium spectroscopy above thresholds
手征夸克模型的一些应用 钟显辉 湖南师范大学物理与信息科学学院.
The hidden-color component in d* dibaryon?
Wasa-at-Cosy The ABC Effect in Double-Pionic Nuclear Fusion and a pn Resonance as its Possible Origin.
Helicity dependence of g n ® Nπ(π) and the GDH integral on the neutrom
The np -> d p0 reaction measured with g11 data
Hexaquarks under the microscope
New States Containing Charm at BABAR
Presentation transcript:

Mikhail Bashkanov Dibaryons at COSY Wasa-at-COSY

Types of particles/resonances color anticolor white Meson Baryon Mikhail Bashkanov "Dibaryons"2

Possible particles Pentaquark Meson-Baryon molecule Hexaquark Baryon-Baryon molecule Mikhail Bashkanov "Dibaryons"3 Tetraquark Meson-Meson molecule

Deuteron to Deltaron 4 Threshold pn 2.2 MeV deuteron ΔΔ 80 MeV d* I(J p ) = 0(1 + ) I(J p ) = 0(3 + ) u u u d d d u u u d d d

WASA 4  Detector π π p d   n  

6 “d* resonance”  70 MeV Total cross section pn  d  0  0 P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011  NN*(1440)

7 Angular distribution in the peak J=1 J=3 P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011

8 The extracted properties of the new particle pn  dibaryon    d     Δ Δ d π π p n I(J p ) = 0(3 + ) Mikhail Bashkanov "Dibaryons"

9 Total cross section pN  d  P. Adlarson et. al Phys. Lett. B721 (2013) 229

10

11 From fusion to free case pn  d*    d  Δ Δ d π π p n pn  d*    NN  Δ Δ π π p n N N Fäldt & Wilkin, PLB 701 (2011) 619 Fäldt & Wilkin, PLB 701 (2011) 619 Albaladejo & Oset, Phys.Rev. C88 (2013) Albaladejo & Oset, Phys.Rev. C88 (2013)

12 pn  pn  0  0 d* Conventional process Conventional process +d* d* P. Adlarson et al., Phys.Lett. B743 (2015)

Dibaryon non-fusion decays 13 PLB 743 (2015) 325 d* PRC 88 (2013) HADES arXiv: arXiv:

Dibaryon hadronic decays 14 pn  d*(2380) PRL 112 (2014) PRC 90, (2014) PLB 721 (2013) 229 PRL 106 (2011) PRC 88 (2013) PLB 743 (2015) 325 WASA data d*

15 The decay modes of the dibaryon ChannelPublications d     M. Bashkanov et. al Phys.Rev.Lett. 102 (2009) P. Adlarson et. al Phys. Rev. Lett. 106:242302, 2011 P. Adlarson et. al Phys.Lett. B721 (2013) d     P. Adlarson et. al Phys.Lett. B721 (2013) pp     P. Adlarson et. al Phys. Rev. C 88, np     P. Adlarson et. al Phys.Lett. B743 (2015) 325 npA. Pricking, M. Bashkanov, H. Clement. arXiv: P. Adlarson et al. Phys. Rev. Lett. 112, , (2014) P. Adlarson et al. Phys. Rev. C 90, , (2014) pn e + e - M. Bashkanov, H. Clement, Eur.Phys.J. A50 (2014) He  M. Bashkanov et. al Phys.Lett. B637 (2006) P. Adlarson et. al Phys. Rev. C 91 (2015) 1, He  P. Adlarson et. al Phys.Rev. C86 (2012) activities from other groups Mikhail Bashkanov "Dibaryons" M. Bashkanov, Stanley J. Brodsky, H. Clement Phys.Lett. B727 (2013)

16

17 pn  d*    d  Δ Δ d π π p n pn  d*    NN  Δ Δ π π p n N N pn  d*  pn p n n p

18 Expectations p n n p SAID SAID with resonance A. Pricking, M. Bashkanov, H. Clement: arXiv:

19 p n n p SAID A. Pricking, M. Bashkanov, H. Clement: arXiv:

20 p n n p SAIDNew SAID solutions P. Adlarson et al. Phys. Rev. Lett. 112, , (2014)

Dimensionless partial wave amplitudes 21 Re Im SP07 SP14 Dimensionless partial wave amplitudes Resonance in the pn system P. Adlarson et al. Phys. Rev. Lett. 112, , (2014)

22 Argand plot P. Adlarson et al. Phys. Rev. Lett. 112, , (2014) P. Adlarson et al. Phys. Rev. C 90, , (2014)

23 Argand plots P. Adlarson et al. Phys. Rev. Lett. 112, , (2014) P. Adlarson et al. Phys. Rev. C 90, , (2014)

24

Deuteron 25 n p np L=2 0.9 fm 4 fm L=0

Deltaron vs Hexaquark 26 Δ Δ ΔΔ L=2 0.9 fm L=0 1.2 fm 0.7 fm F. Huang et al, arXiv:

d*(2380) internal structure and the ABC effect 27 Δ Δ ΔΔ L=2 0.9 fm L=0 1.2 fm M. Bashkanov et al, arXiv:

28

Mirror dibaryon 29   I(J p ) = 0(3 + ) d* u u u d d d I(J p ) = 3(0 + )   u u u u u u Freeman J. Dyson, Nguyen-Hue Xuong Phys. Rev. Lett. 13(1964) 815 Avraham Gal, Humberto Garcilazo Nucl. Phys. A928, (2014), 73

 *  *+  *  *  *+    *  *  *+  *  **   ++ ---- d* How many ways can you combine 6q? Isospin Strangeness

Z=+4 dibaryon isospin coefficients p p p p I

32

33

34 p p p p Δ Δ p p p p p p p p

35 Double-Roper

Charge Z=+4 dibaryon upper limit 36

NN vs ΔΔ 37 Threshold pn pn 2.2 MeV 66 keV deuteron ΔΔ ΔΔ ? 80 MeV d* Z=+4

 *  *+  *  *  *+    *  *  *+  *  **   ++ ---- d* How many ways can you combine 6q? Isospin Strangeness

d*(2380) SU(3) multiplet   *  *  39 J p = 3 +

Strange Dibaryon Isospin Strangeness  *  *+  *  *  *+    * d*

d*(2380) in photoproduction? 41 R. Gilman and F. Gross nucl-th/ (2001) T. Kamae, T. Fujita Phys. Rev. Lett. 38, Feb 1977, 471 H. Ikeda et al., Phys. Rev. Lett. 42, May 1979, 1321 d* I(J p ) = 0(3 + )

The benchmark measurement 42 Newly installed Edinburgh polarimeter M.H. Sikora, D.P. Watts et al, Phys.Rev.Lett. 112 (2014) Mikhail Bashkanov "Dibaryons" Measure polarization of both proton and neutron ! d*

Conclusion The very first dibaryon d*(2380) is established Mass Width Quantum numbers Main decay branches Structure: Hexaquark vs Molecule? No convincing signs for the mirror dibaryon (charge Z=+4) so far Size and shape of the conventional background? Mirror multiplet (28-plet) is likely to be unbound 43

45 Δ Δ d π π  d Mikhail Bashkanov "Dibaryons" A. Fix, H. Arenhoevel. Eur. Phys. J. A 25, 115, (2005).

Z=+4 dibaryon Δ Δ π π N N p p p p WASA, HADES

47

48 M(GeV)12345exp unbound  1.Dyson-Xuong, PRL 13 (1964) Mulders-Aerts-de Swart, PRD 21 (1980) Oka-Yazaki, PLB 90 (1980) Mulders-Thomas, JPG 9 (1983) A. Gal, H. Garcilazo Nucl.Phys. A928 (2014) 73-88