A.Litvinenko VBLHEP JINR Определение центральности столкновения ядер с использованием калориметра cпектаторов в эксперименте A.Litvinenko,

Slides:



Advertisements
Similar presentations
CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
Advertisements

Multiparticle Correlations and Charged Jet Studies in p+p, d+Au, and Au+Au Collisions at  s NN =200 GeV. Michael L. Miller Yale University For the STAR.
Quark Matter 2006 ( ) Excitation functions of baryon anomaly and freeze-out properties at RHIC-PHENIX Tatsuya Chujo (University of Tsukuba) for.
Ultra Peripheral Collisions at RHIC Coherent Coupling Coherent Coupling to both nuclei: photon~Z 2, Pomeron~A 4/3 Small transverse momentum p t ~ 2h 
Direct virtual photon production in Au+Au collision at 200 GeV at STAR Bingchu Huang for the STAR collaboration Brookhaven National Laboratory Aug
11/21/05Ali Hanks - Journal Club1 Determining Centrality at PHENIX Ali Hanks Journal Club November 21, 2005.
Reconstruction of neutrino interactions in PEANUT G.D.L., Andrea Russo, Luca Scotto Lavina Naples University.
0 Dai-Mei Zho u (IOPP/CCNU) Collaboration with: Yun Cheng (CCNU) Xu Cai (CCNU) Yu-Liang Yan (CIAE) Bao-Guo Dong (CIAE) Ben-Hao Sa (CIAE)
Richard Bindel, UMDDivision of Nuclear Physics, Maui, 2005 System Size and Energy Dependence of Elliptical Flow Richard Bindel University of Maryland For.
High p T  0 Production in p+p, Au+Au, and d+Au Stefan Bathe UC Riverside for the Collaboration Topics in Heavy Ion Collisions McGill University, Montreal,
Roberto GemmeIII Convegno Nazionale sulla Fisica di ALICE Frascati, 12-14/11/2007 Reaction plane determination with the neutron Zero Degree Calorimeters.
ИЗМЕРЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО СЕЧЕНИЯ И ВЕКТОРНОЙ АНАЛИЗИРУЮЩЕЙ СПОСОБНОСТИ РЕАКЦИИ УПРУГОГО dp-РАССЕЯНИЯ ПРИ ЭНЕРГИИ 2 ГэВ А.А. Терехин, В.В. Глаголев,
Status of Neutral Dijet Analysis on Data from 200GeV Proton Proton Collisions Using the STAR Detector at RHIC B. S. Page for the Collaboration STAR.
Jornadas LIP 2008 – Pedro Ramalhete. 17 m hadron absorber vertex region 8 MWPCs 4 trigger hodoscopes toroidal magnet dipole magnet hadron absorber targets.
Reaction plane reconstruction1 Reaction plane reconstruction in extZDC Michael Kapishin Presented by A.Litvinenko.
Centrality Determination and Reaction plane reconstruction with MPD D.Dryablov, V. Zhezher, M.Kapishin, G.Musulmanbekov XIV GDRE Workshop, Dubna
Fast Simulation of TOF Response A.Galoyan, LPP, JINR, Dubna Used model.
Charmonium feasibility study F. Guber, E. Karpechev, A.Kurepin, A. Maevskaia Institute for Nuclear Research RAS, Moscow CBM collaboration meeting 11 February.
STAR S.A. Voloshin Elliptic Flow at RHIC STAR Collaboration U.S. Labs: Argonne, Berkeley, Brookhaven National Labs U.S. Universities: Arkansas, UC Berkeley,
Studies of the jet fragmentation in p+p collisions in STAR Elena Bruna Yale University STAR Collaboration meeting, June
Centrality Categorization and its Application to Physics Effects in High-Energy d+A Collisions Javier Orjuela-Koop University of Colorado Boulder For the.
PHENIX Local Polarimeter PSTP 2007 at BNL September 11, 2007 Yuji Goto (RIKEN/RBRC)
Optimization of parameters for jet finding algorithm for p+p collisions at E cm =200 GeV T. G. Dedovich & M.V. Tokarev JINR, Dubna  Motivations.
G. Musulmanbekov, K. Gudima, D.Dryablov, V.Geger, E.Litvinenko, V.Voronyuk, M.Kapishin, A.Zinchenko, V.Vasendina Physics Priorities at NICA/MPD.
S.A. Voloshin STAR QM’06: Energy and system size dependence of elliptic flow and v 2 /  scaling page1 Sergei A. Voloshin Wayne State University, Detroit,
A.Litvinenko VBLHEP JINR 1 The Current status of the Project at JINR A.Litvinenko for collaboration
C. Oppedisano for the ALICE Collaboration. 5 Jun 2012 C. Oppedisano 2/10 Centrality in p-A interactions can be defined through the number of collisions.
The centrality dependence of high p T π 0 production in d-Au collisions Abstract Michael Kordell II, Abhijit Majumder Wayne State University, Detroit,
A.N.Sissakian, A.S.Sorin Very High Multiplicity Physics Seventh International Workshop JINR, Dubna, September 18, 2007 Status of the project NICA/MPD at.
1 Jeffery T. Mitchell – Quark Matter /17/12 The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment Jeffery T. Mitchell Brookhaven.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
Charged Kaon Production Yield Studies with Stretcher Sergei Striganov Fermilab Future of Kaon Physics at Fermilab August 21, Fermilab.
Study of Electromagnetic Interactions of Light Ions in the Framework of the IHEP Ion Program at U70 Serguei Sadovsky, IHEP, Protvino EMIN-2009, Moscow,
Calorimeter in front of MUCh Mikhail Prokudin. Overview ► Geometry and acceptance ► Reconstruction procedure  Cluster finder algorithms  Preliminary.
Charged Particle Multiplicity and Transverse Energy in √s nn = 130 GeV Au+Au Collisions Klaus Reygers University of Münster, Germany for the PHENIX Collaboration.
Experimental search for the nuclear analog of the Prandtl- Glauert singularity effect at SIS100 A good reason to look back to a possibility of shock wave.
Feasibility of J/ψ studies by MPD detector Alla Maevskaya, Alexei Kurepin INR RAS Moscow NICA Roundtable Workshop 11 September 2009.
Dual Target Design for CLAS12 Omair Alam and Gerard Gilfoyle Department of Physics, University of Richmond Introduction One of the fundamental goals of.
Lecture 07: particle production in AA collisions
The 3rd Work Meeting of the CBM-MPD STS Consortium, 1–4 June 2009, Sortavala, Karelia, Russia Results from simulations of the production of secondary particles.
1 Charged hadron production at large transverse momentum in d+Au and Au+Au collisions at  s=200 GeV Abstract. The suppression of hadron yields with high.
24/08/2009 LOMONOSOV09, MSU, Moscow 1 Study of jet transverse structure with CMS experiment at 10 TeV Natalia Ilina (ITEP, Moscow) for the CMS collaboration.
05/03/20161 Cumulative proton production in Cumulative proton production in nuclei-nuclei collisions Elena Litvinenko Anatoly Litvinenko
Marina Golubeva, Alexander Ivashkin Institute for Nuclear Research RAS, Moscow AGeV simulations with Geant4 and Shield Geant4 with Dpmjet-2.5 interface.
July 27, 2002CMS Heavy Ions Bolek Wyslouch1 Heavy Ion Physics with the CMS Experiment at the Large Hadron Collider Bolek Wyslouch MIT for the CMS Collaboration.
S.A. Voloshin STAR ICHEP 2006, Moscow, RUSSIA, July 26 – August 2, 2006page1 Sergei A. Voloshin Wayne State University, Detroit, Michigan for the STAR.
Inclusive cross section and single transverse-spin asymmetry of very forward neutron production at PHENIX Spin2012 in Dubna September 17 th, 2012 Yuji.
Development of FLINT experiment Konstantin Mikhailov for FLINT collaboration ITEP 24 November 2011 The Session-conference of Nuclear Physics Division of.
Single-spin asymmetry of charm di-jet in longitudinally polarized pp collisions at STAR Introduction and motivation Reconstruction of W and Z signals Single-spin.
P. E. Christakoglou HEP Centrality Dependence of the Balance Function in Pb–Pb Collisions (NA49) P. CHRISTAKOGLOU – M. FARANTATOS A. PETRIDIS –
SP- 41 magnet ZDC RPC (TOF) DC ST Target T0 detector MPD / NICA and / Nuclotron Experiments Picosecond Cherenkov detectors for heavy ion experiments.
Centrality, N part & N collision at BRAHMS H. Ito University of Kansas For the BRAHMS Collaboration.
1 Status of Zero Degree Calorimeter for CMS Experiment O.Grachov, M.Murray University of Kansas, Lawrence, KS A.S.Ayan, P.Debbins, E.Norbeck, Y.Onel University.
Feasibility studies for DVCS and first results on exclusive  at COMPASS DVCS studies Physics impact Experimental issues Recoil detector prototype Exclusive.
Two particle correlations: from RHIC to LHC Francesco Noferini Bologna University INFN – sez. Bologna ALICE-TOF Tuesday, May 16th Villasimius (Italy) HOT.
24 May 2008V.Kekelidze, CC NICA/MPD1  Collider versus Fixed Target  Towards 4  acceptance  Working groups - EC  TPC - EC tracking (examples)  Plans.
Simulation / reconstruction with GEMs at DAC A.Zinchenko, A.Kapishin, V.Vasendina for the collaboration VBLHEP, JINR, Dubna,
Effect of TCTVB collimator on ZDC A fraction of the spectator neutrons will hit the jaws Two physic parameters/measurements are affected –The energy mean.
Feasibility of neutron asymmetry measurements with NICA MPD K
The PSD at Pb-Pb run PSD drawbacks at Ar beam
Calorimeters at CBM A. Ivashkin INR, Moscow.
HADES Collaboration meeting XXII,
M.Baznat1, K.K.Gudima1, A.G.Litvinenko2, E.I.Litvinenko2
HADES Collaboration meeting XXII,
STAR Geometry and Detectors
NUCLEUS-NUCLEUS COLLISION Centrality Determination For NICA/MPD
Charged particle multiplicity in Pb-Pb collisions from NA50 experiment
A simulation study of fluctuation effect on harmonic flow
Presentation transcript:

A.Litvinenko VBLHEP JINR Определение центральности столкновения ядер с использованием калориметра cпектаторов в эксперименте A.Litvinenko, M.Golubeva, F.Guber, A.Ivashkin, A.Kurepin, INR, Moscow A.Litvinenko, E.Litvinenko, A.Isupov, I.Migulina, V.Peresedov, JINR, Dubna

A.Litvinenko VBLHEP JINR  Introduction Some definitions Spectators UrQMD generator  UrQMD generator LAQGSM generator  LAQGSM generator  UrQMD - SHIELD - LAQGSM  Conclusions Outline

A.Litvinenko VBLHEP JINR NICA

A.Litvinenko VBLHEP JINR MPD

A.Litvinenko VBLHEP JINR  Quasi-Classical picture  b – not observable  observables b Nuclear-Nuclear collisions

6 Centrality classification  Value of impact parameter Geometrical cross section  In percent from the geometrical cross section Centrality Corresponds to the region impact parameter

Centrality classification Fraction from total cross-section 3. Number of participant …. ? Impact parameter

8 Centrality classification

A.Litvinenko VBLHEP JINR The importance of the centrality classification elliptic flow scaling with space eccentricity short equlibration time Space eccentricity Elliptic flow Nuclear Physics A V757, No. 1-2, p.184,2005

A.Litvinenko VBLHEP JINR The importance of the centrality study Jet Quenching – nuclear modification factor vs centrality Nuclear Physics A V757, No. 1-2, p.184,2005 Nuclear modification factor

A.Litvinenko VBLHEP JINR The importance of the centrality study

A.Litvinenko VBLHEP JINR

Nucleon spectators (spectrum) Yu.Bayukov et al., YaF V.35, No. 4, p.960, (1982) R.Ammarи et al., Pisma v JETF, V.94, No. 4, p.189, (1989)

A.Litvinenko VBLHEP JINR Spectator spectrum

A.Litvinenko VBLHEP JINR

Front view of ZDC. The squares size is 5 x 5 cm x cm

A.Litvinenko VBLHEP JINR geometrical efficiency central hole out of ZDC

A.Litvinenko VBLHEP JINR Simulation Transport – Geant3 and Geant4, generates UrQMD and LAQGSM framework MpdRoot

A.Litvinenko VBLHEP JINR URQMD generator, Sqrt(S)=5 GeV Total kinetic energy of all nucleons directed to ZDC Optimistic results with UrQMD

A.Litvinenko VBLHEP JINR UrQMD generator, Sqrt(S)=9 GeV Total kinetic energy of all nucleons directed to ZDC Optimistic results with UrQMD

A.Litvinenko VBLHEP JINR The accuracy of impact parameter determination for MC with UrQMD

22 The centrality resolution evaluations √S=9 AGeV

A.Litvinenko VBLHEP JINR But The NA49 collaboration. Eur. Phys. J., A2, 383, (1998)

A.Litvinenko VBLHEP JINR LAQGSM high-energy event generator But

A.Litvinenko VBLHEP JINR LAQGSM generator, Sqrt(S)=5 GeV Total kinetic energy of all nucleons and fragments directed to ZDC Taking into account spectator fragments

A.Litvinenko VBLHEP JINR LAQGSM generator, Sqrt(S)=9 GeV Total kinetic energy of all nucleons and fragments directed to ZDC Taking into account spectator fragments

A.Litvinenko VBLHEP JINR SHIELD event generator

A.Litvinenko VBLHEP JINR LAQGSM, Sqrt(S)=5 GeV Total kinetic energy of all nucleons and fragments directed to ZDC URQMD, Sqrt(S)=5 GeV

A.Litvinenko VBLHEP JINR

At large impact parameters the most of spectator nucleons are bound in fragments. The NA49 collaboration. Eur. Phys. J., A2, 383, (1998) Experimental data : the deposited energy for different types of spectators in dependence of the centrality

A.Litvinenko VBLHEP JINR All nucleons directed to the hole of ZDC (rectangle 10x10cm 2 ) 0 % - 60 %60 % - 80 % 80 % %

A.Litvinenko VBLHEP JINR At large impact parameters the most of spectator nucleons are bound in fragments. The NA49 collaboration. Eur. Phys. J., A2, 383, (1998) Experimental data : the deposited energy for different types of spectators in dependence of the centrality

33 The centrality resolution evaluations √S=9 AGeV Kinetic energy of all spectators directed to solid angle 5 º

The centrality resolution evaluations √S=9 AGeV

A.Litvinenko VBLHEP JINR The centrality determination: ZDC (energy) + number of charged barrel tracks

A.Litvinenko VBLHEP JINR UrQMD - SHIELD - LAQGSM b < 3 фм (0 – 4 %)

A.Litvinenko VBLHEP JINR UrQMD - SHIELD - LAQGSM 3 фм < b < 9.5 фм (4 – 40 %)

A.Litvinenko VBLHEP JINR UrQMD - SHIELD - LAQGSM 9.5 фм < b (40 – 100 %)

A.Litvinenko VBLHEP JINR Centrality determination in some experiment y=0 y=3 y>6 STAR PHENIX NA49 ZDC Only STARTPC only PHENIXBBC & ZDC

A.Litvinenko VBLHEP JINR Conclusions The SHIELD and LAQGSM could be used for NICA/MPD simulations under mpdroot. The SHIELD and LAQGSM angular distributions of the spectators differ from URQMD picture. The experimental study of the spectator distributions and calorimeter resolution have to be performed on the extracted beam of NUCLOTRON-M at the fixed target.

A.Litvinenko VBLHEP JINR Conclusions Работа выполнена при поддержке грантов РФФИ а а

A.Litvinenko VBLHEP JINR Backup slides

A.Litvinenko VBLHEP JINR

Fast evaluations: the movement of spectators at NICA/MPD The conclusion: Magnetic field of MPD will not change the polar angles for spectators at ZDC position it will only slightly changes the azimutal angles

A.Litvinenko VBLHEP JINR

Centrality classification C.E.Aguilar et al., Brazilian Journal of Physics, V.34,No.1,p.319,(2004)

A.Litvinenko VBLHEP JINR Calorimeter No.1

A.Litvinenko VBLHEP JINR Calorimeter No.1

A.Litvinenko VBLHEP JINR Calorimeter No.1

A.Litvinenko VBLHEP JINR Calorimeter No.1

A.Litvinenko VBLHEP JINR Linearity Resolution Longitudinal distribution

A.Litvinenko VBLHEP JINR Calorimeter No.1

A.Litvinenko VBLHEP JINR CONCLUSION

A.Litvinenko VBLHEP JINR Пространственное разрешение

A.Litvinenko VBLHEP JINR ZDC

A.Litvinenko VBLHEP JINR ZDC + Multiplicity 1000 Min Bias

A.Litvinenko VBLHEP JINR ZDC + Multiplicity 1000 Min Bias

A.Litvinenko VBLHEP JINR

PHENIX ZDC + BBC

A.Litvinenko VBLHEP JINR NA49 VCAL (ZDC)

65 TIME = 0 fm/c,

66 TIME = 1 fm/c,

67 TIME = 2 fm/c,

68 TIME = 3 fm/c,