Space weather effects of the solar wind on different regions of the magnetosphere Viviane PIERRARD BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERO Belgian Institute for Space Aeronomy (BIRA-IASB) Institut d’Aéronomie Spatiale de Belgique (IASB) Belgisch Instituut voor Ruimte-Aeronomie (BIRA) IAP Charm
Kinetic models based on the solution of the evolution equation Solar wind Exosphere: Kn>>1 Vlasov equation Exobase: Kn=1 Solar wind escape: Rs Barosphere: Kn<<1 Fokker-Planck 1. Vlasov (analytic) Pierrard et al., Sol. Phys., Fokker-Planck Pierrard et al., JGR, WPI kinetic Alfven waves Pierrard & Voitenko, Sol. Phys WPI Whistler turbulence Pierrard et al., Sol. Phys Pierrard V., “Exploring the solar wind”, , Intech, ISBN , 2012 Knudsen = mean free path/H Friction Diffusion
Velocity distribution functions observed in situ in the solar wind Electrons 1 AU WINDProtons 0.5 AU HeliosIons He O Ne 1 AU WIND halo core strahl B
Ulysses electron distributions fitted with Kappa functions Results : = 3.8 +/- 0.4 for v > 500 km/s (4878 observ.) = 4.5 +/- 0.6 for v < 500 km/s (11479 observ.) Ions WIND: =2.5 General in space plasmas Kappa functions Pierrard and Lazar, Sol. Phys., 287, , /s , 2010
Solar wind kinetic model: profiles of the moments Maxwellian Kappa=2 Pierrard, Space Sci. Rev., 172, 315, 2012 Not classical heat flux Pierrard et al., Solar Phys., 2014
Solar wind minor ions Pierrard, Space Sci. Rev., 172, 315, 2012 Kappa=5 for all species T=10000 K at the top of chromosphere Heating of the corona by velocity filtration Acceleration of the ions
Solar wind model SDO observations 29 May 2013 coronal holes directed to the Earth. Pierrard & Pieters, ASP, , 2014 ACE observations of velocity at 1 AU
Model with collisions and whistler turbulence Bottom (collision-dominated): f(2 R s, >0,v) = maxwellian Top (collisionless conditions): f(14 R s, 0,v<v e ) f(14 R s, v e ) = 0 Pierrard, Lazar & Schlickeiser, Sol. Phys. 287, 421, 2011 Electron velocity distribution function
Kp [0-9] stations (11N, 2S 44-60°) Dst stations (eq) AE stations N (aur) PC station (pol) Geomagnetic activity indices (based on B at the surface of the Earth) Storms and substorms
CR2075 Corotating Interaction Regions CR2075 CR2076 u B Dst Depends on u, B, n
Auroral regions Pierrard et al., J. Atmosph. Sol. Terr. Phys., 69 doi: /j.jastp , 2007 Current-voltage relationship FUV IMAGE
Terrestrial magnetosphere
Electron flux in the MeV at 820 km measured by EPT on PROBA-V Van Allen Radiation belts Energetic protons and electrons Pierrard et al., Space Sci. Rev., doi: /s , 2014
AP8 Max J(E>10 MeV)AE8 Max J(E >1 MeV) L (Re) internal: p+ (100 keV-500 MeV) external: p+ (<10 MeV) e- (10 keV-10 MeV) e- (10 keV-5 MeV) 4 Rt 10 Rt Van Allen Radiation belts
High flux variations Benck et al., SWSC, 3, doi: /SWSC/ , 2013
Dynamic model of the radiation belts Dynamic model of the electron radiation belts based on CLUSTER/RAPID observations ( ) Pierrard & Borremans, subm. SWSC, 2014
Links Plasmasphere/radiation belts Plasmasphere: 1 eVRadiation belts: > 200 keV Pierrard and Benck, AIP, 1500, 216, 2012 (SAC-C) Darrouzet et al., JGR, 118, , 2013 (Cluster)
/ Terrestrial plasmasphere and plasmapause position Pierrard and Voiculescu, GRL 38, L12104, 2011 on Ionosphere, GPS Web-based forecasting and nowcasting model
Before substorm 9 June h00 After substorm 10 June h00 Comparison with observations IMAGE ( ): RPI and EUV He + ions at 30.4 nm
Terrestrial polar wind Input: n and T at 2000 km +++ e - p + … O + Pierrard and Borremans, ASP 459, 2012
Pierrard V., Planet. Space Sci., doi : /j.pss , 2009 Electron density in the exosphere of Jupiter Auroral oval and footprints on Jupiter Saturn and Jupiter
- CMEs and solar wind high speed streams cause geomagnetic storms and substorms - Variations measured by geomagnetic activity indices (Kp, Dst) - Auroral oval larger and wider - High flux variations in the outer electron Van Allen belt - High variability of the plasmapause position - Comparison with the magnetosphere of other planets - Kinetic models developed for space plasmas - Models provided on IASB-BIRA/STCE / IUAP CHARM Conclusions
BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERO Conclusions CMEs and solar wind high speed streams cause geomagnetic substorms and storms Variations measured by geomagnetic activity indices at the ground (Kp, Dst) Auroral oval larger and wider High flux variations in the outer electron Van Allen belt High variability of the plasmapause position Comparison with the magnetosphere of other planets Kinetic models developed for space plasmas Models provided on IASB-BIRA/STCE / IUAP CHARM
The moments of f Number density [m -3 ] Particle flux [m -2 s -1 ] Bulk velocity [m s -1 ] Energy flux [Jm -2 s -1 ] Pressure [Pa] Temperature [K]
Kappa distributions: theory and applications in space plasmas Generation of Kappa in space plasmas: turbulence and long-range properties of particle interactions in a plasma - plasma immersed in suprathermal radiation (Hasegawa et al., 1985) - random walk with power law (Collier, 1993) - turbulent thermodynamic equilibrium (Treumann, 1999) - entropy generalization in nonextensive Tsallis statistics (Leubner, 2002) - resonant interactions with whistler waves (Vocks and Mann, 2003) Dispersion properties and stability of Kappa distributions –Vlasov-Maxwell kinetics. Dielectric tensor –The modified plasma dispersion function –Isotropic /Anisotropic Kappa distributions Pierrard and Lazar, Sol. Phys., 287, , /s , 2010
Consequence 3. Solar wind accelerated to high bulk velocity due to the presence of suprathermal electrons (Vlasov model) =2 Maxwell Pierrard and Lemaire, JGR 101, , 1996 Pierrard, Space Sci. Rev., 172, , 2012
Consequence: Non classical heat flux Temperature inversion around 2 Rs - Peak in electron temperature at 2 Rs - Corresponds to coronal brightness measurements obtained during solar eclipses Heat flux -not given by the Spitzer-Harm expression -Spitzer-Harm heat flux assumed in fluid models -No need of additional heating source to heat the corona or to accelerate the wind Pierrard V., K. Borremans, K. Stegen and J. Lemaire, Solar Phys., doi: /S x, 2014 Te model Te obs. polar Te obs. equator Qe model Qp model Classical heat flux
Introduction Solar wind Kinetic models Magnetosphere Geomagnetic activity indices Aurora Van Allen belts Plasmasphere-ionosphere Conclusions