Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., www.cenan.mx J. Mauricio López R.

Slides:



Advertisements
Similar presentations
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Advertisements

J. Mauricio López R. Centro Nacional de Metrología, CENAM.
First Year Seminar: Strontium Project
Masers Donna Kubik Why were masers developed before lasers? How did the first maser work? Applications? What was really the first maser?
Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., J. Mauricio López R.
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
Precision measurement with ultracold atoms and molecules Jun Ye JILA, National Institute of Standards and Technology and Department of Physics, University.
Heidelberg, 15 October 2005, Björn Hessmo, Laser-based precision spectroscopy and the optical frequency comb technique 1.
1S-2S transition frequency measurements in atomic hydrogen N. Kolachevsky MPQ.
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
Structure of Atoms Rutherford's model of the atom was a great advance, however, it does not give an satisfactory treatment of the electrons. To improve.
Laser Cooling: Background Information The Doppler Effect Two observes moving relative to each other will observe the same wave with different frequency.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Guillermina Ramirez San Juan
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
The Forbidden Transition in Ytterbium ● Atomic selection rules forbid E1 transitions between states of the same parity. However, the parity-violating weak.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
Jan W. Thomsen, G. K. Campbell, A. D. Ludlow, S. Blatt, M. Swallows, T. Zelevinsky, M. M. Boyd, M. Martin, T. Nicholson and J. Ye JILA, NIST and University.
Spin-motion coupling in atoms Cooling to motional ground states and Quantum logic spectroscopy.
Light and Matter Tim Freegarde School of Physics & Astronomy University of Southampton Controlling matter with light.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
H. J. Metcalf, P. Straten, Laser Cooling and Trapping.
1 (Almost) Absolute Zero Parkland Middle School 9 January 2008 William D. Phillips Laser cooling and trapping group National Institute of Standards and.
A brief historic perspective of the time measurement J. Mauricio López R. Centro Nacional de Metrología.
M. L. W. Thewalt, A. Yang, M. Steger, T. Sekiguchi, K. Saeedi, Dept. of Physics, Simon Fraser University, Burnaby BC, Canada V5A 1S6 T. D. Ladd, E. L.
Magnetic Resonance Contributions to Other Sciences Norman F. Ramsey Harvard University Principles of Magnetic Resonance First experiments Extensions to.
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
Hydrogen atomic clocks J. Mauricio López R. División de Tiempo y Frecuencia.
Des horloges atomiques pour LISA ? Pierre Lemonde Bureau National de Métrologie – SYRTE (UMR CNRS 8630) Observatoire de Paris, France Journées LISA-FRANCE.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Determination of fundamental constants using laser cooled molecular ions.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Degenerate Quantum Gases manipulation on AtomChips Francesco Saverio Cataliotti.
High-performance Apparatus for Bose-Einstein Condensation of Rubidium Yoshio Torii Erik Streed Micah Boyd Gretchen Campbell Pavel Gorelik Dominik Schneble.
NIST-F1 Cesium Fountain Atomic Clock The Primary Time and Frequency Standard for the United States f = 9,192,631,770.
J. Mauricio Lopez R. 1, Michael A. Lombardi 2, N. Diaz-Mu ñ oz 1 and Eduardo de Carlos Lopez 1 1 Centro Nacional de Metrología (CENAM), Querétaro, Mexico.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
PHYS 1442 – Section 004 Lecture #16 Weednesday March 19, 2014 Dr. Andrew Brandt Chapter 22 Maxwell and the c.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Physics 551 Presentation: Doppler Cooling Zane Shi Princeton University November 6 th, 2007.
Relativistic Quantum Theory of Microwave and Optical Atomic Clocks
Optically detected magnetic resonance of silicon vacancies in SiC Kyle Miller, John Colton, Samuel Carter (Naval Research Lab) Brigham Young University.
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Pablo Barberis Blostein y Marc Bienert
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
RA07 Current Status of the University of Oklahoma e-EDM Search. John Moore-Furneaux*, Neil Shafer-Ray Columbus OH, 6/23/2011 *J.E. Furneaux.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Status Report on Time and Frequency Activities at KRISS Taeg Yong Kwon Center for Time and Frequency, Division of Physical Metrology Korea Research Institute.
MOLECULAR SPECTROSCOPY
Rydberg atoms part 1 Tobias Thiele.
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
The SIMT Time Scale J. Mauricio López R. Centro Nacional de Metrologia, CENAM, El Marques, Qro. Mexico.
1 Frekvenčni standard in merjenje z optičnim glavnikom.
Tests of Lorentz Invariance with atomic clocks and optical cavities Fundamental Physics Laws: Gravity, Lorentz Symmetry and Quantum Gravity - 2 & 3 June.
Measurement Science Science et étalons
Photon counter with Rydberg atoms
C H A P T E R 1 Introduction and Mathematical Concepts
Measurements & Units NASA
Presentation transcript:

Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., J. Mauricio López R.

Albert Einstein

The heart as the closest clock of men

Slaves of our past and of the time

TIME The most measured physical quantity THE TWO FACES OF TIME MEASUREMENT The current SI Time is the most accurate measurement Scientific and fundamental researchTechnological and practical applications

Dennis D. McCarty, Evolution of Time Scales from astronomy to physicasl metrology, Metrologia 48 (2011), S132 – S144. The last 600 years of time measurement

Christiaan Huygens (1660) Accurate pendulum clock and the equation of time The last 600 years of time measurement Christiaan Huygens (1629 – 1695)

Longitude Act of 1714 John Harrison chronometers The last 600 years of time measurement

Greenwich meridian as interational reference (1884) The last 600 years of time measurement

First atomic clock at NPL (1957) The last 600 years of time measurement Louis Essen and his NPL Cs atomic clock

Atomic definition of the second, 1967 The last 600 years of time measurement The second is the duration of periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 atom. Resolution 1, 13th CGPM, 1967

Atomic clocks era The last 600 years of time measurement Progress at one order of magnitud per decade

Ultracold matter and Cs fountain clocks The last 600 years of time measurement Progress at one order of magnitud per decade

Frequency combs and optical atomic clocks The last 600 years of time measurement Progress about four orders of magnitud per decade !!

Cs-133 Atomic Clocks The second is the duration of periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 atom. Hiperfine structure Ground state

What is an atomic clock

Disciplined oscillators The basic concept of an atomic/optical clock  AA LL L LL L L  

Frequency Stability of an Atomic Clock o  Allan Deviation

Strategies to develop better atomic clocks Cold atoms and very long lifetime on excited states Optical Frequencies Large amount of atoms Large averaging times / robust systems

Nuclear Magnetic Resonance and atomic clocks

Spin invertion by the action of a rotating magnetic field Rabi´s Method z Constant magnetic field Larmour Frequency 00 

Spin invertion by the action of a rotating magnetic field Rabi´s Method z Constant magnetic field Larmour Frequency 00  Rotating magnetic field perpendicular to H 0 

Spin invertion by the action of a pulsed rotating magnetic field Ramsey´s Method z Constant magnetic field Larmour Frequency 00  Rotating magnetic field perpendicular to H 0 Pulsed! 

CampoMagnético Constante (Campo C) Contenedor con Cesio 133 Cavidad de Ramsey Campo Magnético Inhomogéneo (Campo B) Campo Magnético Inhomogéneo (Campo A) Filamento Incandescente (Ionizador) Detector Generador de Microondas Lazo de amarre Vacío Ramsey Method

First atomic clocks (1957)

Commercial available Cs atomic clock using the magnetic selection of N. Ramsey

Cs-133 Optical pumping Coulomb  850nm Spin-Spin GHz F’=5 F’=4 F’=3 F’=2 F’=4 F’=3 F’=4 F’=3 251MHz 200MHz 150MHz 1167MHz + Zeeman Effect 11 sublevels 9 sublevels 7 sublevels 5 sublevels 9 sublevels 7 sublevels 9 sublevels 7 sublevels + INTERACTION ENERGY Spin-Orbit 6 2 P 3/2 6 2 P 1/2 6 2 S 1/2  100GHz  894nm + Not at scale

Ramsey method with optical pumping (1985) Cs Oven Pumping Laser Detection Laser Detector Ramsey Cavity Microwave Oscillator Phase lock loop

Optically pumped thermal Cs beam clock CENAM CsOp Hz

Doppler Cooling A two quantum states model Energy E2E2 E1E1 Laboratory reference frame F = 0 -  0 v

R = F + k·v + …  0 L = F - k·v + …<< 0 Atom´s reference frame 0 Doppler Cooling A two quantum states model

Doppler limit Cesio-133 Sodio h  6,6  J  s k B  1,3  J/K Doppler Cooling A two quantum states model

Phys. Rev. Lett. 61, 169–172 (1988) [Issue 2 – 11 July 1988 ] Observation of atoms laser cooled below the Doppler limit Paul D. Lett, Richard N. Watts, Christoph I. Westbrook, and William D. Phillips Electricity Division, National Bureau of Standards, Gaithersburg, Maryland Phillip L. Gould Department of Physics, University of Connecticut, Storrs, Connecticut Harold J. Metcalf Department of Physics, State University of New York at Stony Brook, Stony Brook, New York Received 18 April 1988 We have measured the temperature of a gas of sodium atoms released from ``optical molasses'' to be as low as 43±20 µK. Surprisingly, this strongly violates the generally accepted theory of Doppler cooling which predicts a limit of 240 µK. To determine the temperature we used several complementary measurements of the ballistic motion of atoms released from the molasses. ©1988 The American Physical Society

F=4 F´=5  852 nm Energy The Cs-133 atom as a two level quantum system

F=4 F´=5 m = +4 m = -4 m = 0 m = -5 m = +5 m = 0  852 nm 0 1 B / Gauss Not at escale Energy The Cs-133 atom as a multilevel quantum systems

Temperatures below the Doppler limit x 0 44 22 linear -- ++ -- z y m = -3/2 m = -1/2m = +1/2 m = +3/2 m = -1/2 m = +1/2 J = 1/2 J = 3/2

Stark effect g-½g-½ g+½g+½ 0 linear -- ++ -- Energy Position 88 z 0 443838 2238385858

z Energy 88 443838 22 5858 g-½g-½ g+½g+½ Sisyphus effect and temperatures below the Doppler limit

Frequnecy  E  t  h/4    t  1/4    1Hz 0  Hz  /  Transition probability 0  Ramsey Method + ultracold Cs atoms

Cooling beams Detection laser Microwaves cavity Detector Optical molases Wayne M. Itano, Norman F. Ramsey, Accurate Measurement of Time, Scientific American, July Cs Fountain Clock (1990)

Resolution of the peak Wayne M. Itano, Norman F. Ramsey, Accurate Measurement of Time, Scientific American, Clock transition

33.0 cm22.0 cm 35.0 cm CENAM CsF-1 physical package

Cesium fountain clock CENAM CsF-1 MOT Optical systemPhysics package

TIME IS THE MOST POWERFUL METROLOGICAL VARIABLE JOHN HALL, Nobel Prize in Physics 2005

NO CONTABAN CON MI ASTUCIA!!

Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., J. Mauricio López R.

The second is the duration of periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 atom.

Horno de Cs Láser de bombeo Láser de detección Detector Cavidad de microondas CENAM thermal Cesium beam atomic clock 180 Hz

Rabi pedestal comparison between CENAM CsOP-1 and CENAM CsOP-2 Ramsey fringe line comparison between CENAM CsOP-1 and CENAM CsOP-2.

Cooling beams Detection laser Microwave cavity Detector Optical molases CENAM Cs Fountain Clock CENAM CsF-1  600 nk

33.0 cm22.0 cm 35.0 cm CENAM CsF-1 physical package

CsF-1 Frecuencia Probabilidad de transición CsOP-1 CsOP-2 CENAM Cesium clocks

CsF-1 Frecuencia Probabilidad de transición CsOP-1 CsOP-2 CsF-1 CENAM Cesium clocks