Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Ordinary Differential Equations Equations which are.

Slides:



Advertisements
Similar presentations
Ordinary Differential Equations
Advertisements

Chapter 6 Differential Equations
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 ~ Curve Fitting ~ Least Squares Regression Chapter.
Ordinary Differential Equations
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 61.
PART 7 Ordinary Differential Equations ODEs
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 32 Ordinary Differential Equations.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 31 Ordinary Differential Equations.
Initial-Value Problems
Dr. Jie Zou PHY Chapter 9 Ordinary Differential Equations: Initial-Value Problems Lecture (II) 1 1 Besides the main textbook, also see Ref.: “Applied.
8-1 Chapter 8 Differential Equations An equation that defines a relationship between an unknown function and one or more of its derivatives is referred.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Martin Mendez UASLP Chapter 61 Unit II.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 181 Interpolation Chapter 18 Estimation of intermediate.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 171 CURVE.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 181 Interpolation.
Numerical Solutions of Ordinary Differential Equations
NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 11.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Numerical Differentiation and Integration Standing.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 171 Least.
CISE301_Topic8L31 SE301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture KFUPM (Term 101) Section 04 Read , 26-2,
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Part 31 Chapter.
Differential Equations and Boundary Value Problems
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Part 81 Partial.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 ~ Numerical Differentiation and Integration ~ Newton-Cotes.
Numerical solution of Differential and Integral Equations PSCi702 October 19, 2005.
PART 7 Ordinary Differential Equations ODEs
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Numerical Differentiation and Integration Standing.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 ~ Linear Algebraic Equations ~ Gauss Elimination Chapter.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Numerical Differentiation and Integration Part 6 Calculus.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 31.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 2 Roots of Equations Why? But.
EE3561_Unit 8Al-Dhaifallah14351 EE 3561 : Computational Methods Unit 8 Solution of Ordinary Differential Equations Lesson 3: Midpoint and Heun’s Predictor.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 111.
Computational Method in Chemical Engineering (TKK-2109)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 ~ Roots of Equations ~ Open Methods Chapter 6 Credit:
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 ~ Numerical Differentiation and Integration ~ Integration.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 71.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. ~ Ordinary Differential Equations ~ Stiffness and Multistep.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 261 Stiffness.
Numerical Methods for Solving ODEs Euler Method. Ordinary Differential Equations  A differential equation is an equation in which includes derivatives.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 22.
The elements of higher mathematics Differential Equations
Engineering Analysis – Computational Fluid Dynamics –
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 6 - Chapter 21.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 7 - Chapter 25.
Numerical Analysis – Differential Equation
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 271 Boundary-Value.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 27.
Please remember: When you me, do it to Please type “numerical-15” at the beginning of the subject line Do not reply to my gmail,
Dr. Mujahed AlDhaifallah ( Term 342)
Today’s class Ordinary Differential Equations Runge-Kutta Methods
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Truncation Errors and the Taylor Series Chapter 4.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 5 Integration and Differentiation.
Lecture 39 Numerical Analysis. Chapter 7 Ordinary Differential Equations.
This chapter is concerned with the problem in the form Chapter 6 focuses on how to find the numerical solutions of the given initial-value problems. Main.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 6 - Chapters 22 and 23.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 21 Numerical Differentiation.
Keywords (ordinary/partial) differencial equation ( 常 / 偏 ) 微分方程 difference equation 差分方程 initial-value problem 初值问题 convex 凸的 concave 凹的 perturbed problem.
Ordinary Differential Equations
Part 7 - Chapter 25.
Interpolation Estimation of intermediate values between precise data points. The most common method is: Although there is one and only one nth-order.
Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equation
Class Notes 18: Numerical Methods (1/2)
Part 7 - Chapter 25.
Numerical Differentiation Chapter 23
Numerical Analysis Lecture 37.
Presentation transcript:

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Ordinary Differential Equations Equations which are composed of an unknown function and its derivatives are called differential equations. Differential equations play a fundamental role in engineering because many physical phenomena are best formulated mathematically in terms of their rate of change. v- dependent variable t- independent variable

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Part 72 When a function involves one dependent variable, the equation is called an ordinary differential equation (or ODE). A partial differential equation (or PDE) involves two or more independent variables. Differential equations are also classified as to their order. –A first order equation includes a first derivative as its highest derivative. –A second order equation includes a second derivative. Higher order equations can be reduced to a system of first order equations, by redefining a variable.

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Part 73 ODEs and Engineering Practice Figure PT7.1

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 254 Figure PT7.2

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 255 Runga-Kutta Methods Chapter 25 This chapter is devoted to solving ordinary differential equations of the form Euler’s Method

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 256 Figure 25.2

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 257 The first derivative provides a direct estimate of the slope at x i where f(x i,y i ) is the differential equation evaluated at x i and y i. This estimate can be substituted into the equation: A new value of y is predicted using the slope to extrapolate linearly over the step size h.

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 258 Not good

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 259 Error Analysis for Euler’s Method/ Numerical solutions of ODEs involves two types of error: –Truncation error Local truncation error Propagated truncation error –The sum of the two is the total or global truncation error –Round-off errors

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2510 The Taylor series provides a means of quantifying the error in Euler’s method. However; –The Taylor series provides only an estimate of the local truncation error-that is, the error created during a single step of the method. –In actual problems, the functions are more complicated than simple polynomials. Consequently, the derivatives needed to evaluate the Taylor series expansion would not always be easy to obtain. In conclusion, –the error can be reduced by reducing the step size –If the solution to the differential equation is linear, the method will provide error free predictions as for a straight line the 2 nd derivative would be zero.

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2511 Figure 25.4

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2512 Improvements of Euler’s method A fundamental source of error in Euler’s method is that the derivative at the beginning of the interval is assumed to apply across the entire interval. Two simple modifications are available to circumvent this shortcoming: –Heun’s Method –The Midpoint (or Improved Polygon) Method

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2513 Heun’s Method/ One method to improve the estimate of the slope involves the determination of two derivatives for the interval: –At the initial point –At the end point The two derivatives are then averaged to obtain an improved estimate of the slope for the entire interval.

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2514 Figure 25.9

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2515 The Midpoint (or Improved Polygon) Method/ Uses Euler’s method t predict a value of y at the midpoint of the interval:

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2516 Figure 25.12

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 17 Runge-Kutta Methods (RK) Runge-Kutta methods achieve the accuracy of a Taylor series approach without requiring the calculation of higher derivatives. Increment function p’s and q’s are constants

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2518 k’s are recurrence functions. Because each k is a functional evaluation, this recurrence makes RK methods efficient for computer calculations. Various types of RK methods can be devised by employing different number of terms in the increment function as specified by n. First order RK method with n=1 is in fact Euler’s method. Once n is chosen, values of a’s, p’s, and q’s are evaluated by setting general equation equal to terms in a Taylor series expansion.

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2519 Values of a 1, a 2, p 1, and q 11 are evaluated by setting the second order equation to Taylor series expansion to the second order term. Three equations to evaluate four unknowns constants are derived.

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2520 We replace k 1 and k 2 in to get or Compare with and obtain (3 equations-4 unknowns)

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2521 Because we can choose an infinite number of values for a 2, there are an infinite number of second-order RK methods. Every version would yield exactly the same results if the solution to ODE were quadratic, linear, or a constant. However, they yield different results if the solution is more complicated (typically the case). Three of the most commonly used methods are: –Huen Method with a Single Corrector (a 2 =1/2) –The Midpoint Method (a 2 =1) –Raltson’s Method (a 2 =2/3)

Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 2522 Figure 25.14