Alkenes C n H 2n “unsaturated” hydrocarbons C 2 H 4 ethylene Functional group = carbon-carbon double bond sp 2 hybridization => flat, 120 o bond angles.

Slides:



Advertisements
Similar presentations
Organic A Chapter 8 Alkenes (I) By Prof. Dr. Adel M. Awadallah Islamic University of Gaza.
Advertisements

Structure and Synthesis of Alkenes
The (E)-(Z) System for Designating Alkene Diastereomers

Learning Objectives Chapter five discusses the following topics and by the end of this chapter the students will:  Recognize the structure.
4-1 © 2005 John Wiley & Sons, Inc All rights reserved Chapter 4: Alkenes and Alkynes.
ORGANIC CHEMISTRY 171 Section Alkenes,Chapter 3.
ORGANIC CHEMISTRY HYDROCARBONS Examples of Alkenes ETHENE, C 2 H 4 H C C H OR CH 2 CH 2 PROPENE CH 2 CH CH 3 TASK: Use ball & stick models or sketches.
EthersR-O-R or R-O-R´ Nomenclature: simple ethers are named: “alkyl alkyl ether” “dialkyl ether” if symmetric CH 3 CH 3 CH 3 CH 2 -O-CH 2 CH 3 CH 3 CH-O-CHCH.
Alkyl Halides R-X (X = F, Cl, Br, I)
Chapter 41 Alkenes. Chapter 4. Chapter 42 Contents of Chapter 3 General Formulae and Nomenclature of Alkenes General Formulae and Nomenclature of Alkenes.
Chapter 7 Structure and Synthesis of Alkenes Organic Chemistry, 6 th Edition L. G. Wade, Jr.
1 ALKENES ALKENES are hydrocarbons: * with C=C bonds; * of general formula C n H 2n ; * having 120° bond angles and trigonal planar shape around the C=
The Structure and Synthesis of Alkenes. Alkenes: l Are hydrocarbons with carbon-carbon double bonds. l Are also known as olefins. l C=C is considered.
Alkynes.
Chapter 3. Alkena dan Alkuna: Nomenklatur dan Reaksinya
Alkynes. C n H 2n-2 C 2 H 2 H:C:::C:H H—C  C—H sp => linear, 180 o acetylene ethyne C 3 H 4 CH 3 C  CH methylacetylene propyne.
The Nature of Organic Reactions: Alkenes and Alkynes
CHE-300Review nomenclature syntheses reactions mechanisms.
Reactions of aldehydes and ketones:
Alkenes. Introduction Alkenes are unsaturated hydrocarbons that contain one or more carbon-carbon double bonds C=C, in their structures Alkenes have the.
By: Dr. Siham Lahsasni 1 Unsaturated Hydrocarbons 1 Alkenes.
CHE-300 Review nomenclature syntheses reactions mechanisms.
Alkenes and alkynes The chemistry of unsaturation.
CHE 311 Organic Chemistry I
Chapter 12 Unsaturated Hydrocarbons Spencer L. Seager Michael R. Slabaugh Jennifer P. Harris.
Dr Manal F. AbouTaleb Alkynes .1 Introduction
Unsaturated Hydrocarbons
LecturePLUS Timberlake1 Alkenes and Alkynes Geometric Isomers of Alkenes Addition Reactions.
© E.V. Blackburn, 2011 Alkenes C n H 2n. © E.V. Blackburn, 2011 Alkenes called unsaturated hydrocarbons also known as olefins (oleum, latin, oil; facere,
Chapter 4 Unsaturated Hydrocarbons. Objectives  Bonding in Alkenes  Constitutional isomers in alkenes  Cis-trans stereoisomers in alkenes  Addition,
1 CHE 102 Chap 19 Chapter 20 Unsaturated Hydrocarbons.
Nomenclature of Alkenes and Cycloalkenes
Alkenes and Cycloalkenes
Unsaturated Hydrocarbons
Chapter 5 – Structure and Preparation of Alkenes
Unsaturated Hydrocarbons
Unsaturated Hydrocarbons: Alkenes 108 Chem Chapter 3 1.
CH 6: Alkenes Structure and Reactivity Renee Y. Becker CHM 2210 Valencia Community College.
Chapter 4 Introduction to Alkenes. Structure and Reactivity
Alcohols R-O-H Classification CH3, 1o, 2o, 3o Nomenclature:
Ch. 12 Alkenes Homework , 12.17, 12.19, 12.23, 12.25, 12.27, 12.36, 12.37, 12.41,12.42, 12.43,
Organic Halogen Compounds
Alkenes, Reactions. NR      some NR        Acids Bases Metals Oxidation Reduction Halogens R-H R-X R-OH R-O-R Alkenes.
Alkene Simple alkenes are named much like alkanes, using the root name of the longest chain containing the double bond. The ending is changed from -ane.
Unsaturated Hydrocarbons
Physical and Chemical Properties and Reactions of Alkenes and Alkynes CHAPTER SEVEN TERRENCE P. SHERLOCK BURLINGTON COUNTY COLLEGE 2004 CHE-240 Unit 3.
Structure and Synthesis of Alkenes
categories of organic reactions There are so many types of organic reactions. We’re going to focus on just a few. There are so many types of organic reactions.
Preparation of Alkanes Methane through -pentane and iso-pentane can be obtained in pure form by fractional distillation of petroleum and natural gas; neo-pentane.
Alkenes : Structure and Reactivity
Chapter 7 Lecture Alkenes I. Structure & Properties Organic Chemistry, 8 th Edition L. G. Wade, Jr.
SYNTHESIS OF ALKENES VIA ELIMINATION REACTIONS
© 2016 Cengage Learning. All Rights Reserved. John E. McMurry Chapter 7 Alkenes: Structure and Reactivity.
Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides.
Alkenes - Synthesis and Reactions
Saturated and Unsaturated Hydrocarbons
Alkenes CnH2n “unsaturated” hydrocarbons
ALKENES.
Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides.
Alkenes CnH2n.
Unsaturated Hydrocarbons
Alkenes, Cycloalkenes and Dienes
Chapter 7 Alkenes and Alkynes I: Properties and Synthesis Elimination Reactions of Alkyl Halides.
Nomenclature of Alkenes
Unsaturated Hydrocarbons: Alkenes
Alkynes. CnH2n-2 C2H2 H:C:::C:H H—C  C—H sp => linear, 180o
Synthesis and Properties of Alkene
Alkynes. CnH2n-2 C2H2 H:C:::C:H H—C  C—H sp => linear, 180o
Synthesis and Properties of Alkene
Presentation transcript:

Alkenes C n H 2n “unsaturated” hydrocarbons C 2 H 4 ethylene Functional group = carbon-carbon double bond sp 2 hybridization => flat, 120 o bond angles σ bond & π bond => H 2 C=CH 2 No rotation about double bond!

C 3 H 6 propylene CH 3 CH=CH 2 C 4 H 8 butylenesCH 3 CH 2 CH=CH 2 α-butylene 1-butene CH 3 CH 3 CH=CHCH 3 CH 3 C=CH 2 β-butylene isobutylene 2-butene2-methylpropene

there are two 2-butenes: cis-2-butene trans-2-butene “geometric isomers” (diastereomers)

C=C are called “vinyl” carbons If either vinyl carbon is bonded to two equivalent groups, then no geometric isomerism exists. CH 3 CH=CHCH 3 CH 3 CH 2 CH=CH 2 yesno CH 3 (CH 3 ) 2 C=CHCH 3 CH 3 CH=CCH 2 CH 3 no yes

Confusion about the use of cis- and trans-. According to IUPAC rules it refers to the parent chain. “cis-” ????????

E/Z system is now recommended by IUPAC for the designation of geometric isomerism. 1.Use the sequence rules to assign the higher priority * to the two groups attached to each vinyl carbon. 2. * * * * (Z)- “zusammen” (E)- “entgegen” together opposite

* ** * (Z)- (E)-

Nomenclature, alkenes: 1.Parent chain = longest continuous carbon chain that contains the C=C. alkane => change –ane to –ene prefix a locant for the carbon-carbon double bond using the principle of lower number. 2.Etc. 3.If a geometric isomer, use E/Z (or cis/trans) to indicate which isomer it is.

* ** * (Z)-3-methyl-2-pentene ( 3-methyl-cis-2-pentene ) (E)-1-bromo-1-chloropropene

CH 3 CH 3 CH 2 CHCH 2 CH 3 \ / C = C3-ethyl-5-methyl-3-heptene / \ CH 3 CH 2 H (not a geometric isomer)

-ol takes precedence over –ene CH 2 =CHCH 2 -OH2-propen-1-ol CH 3 CHCH=CH 2 3-buten-2-ol OH

Physical properties: non-polar or weakly polar no hydrogen bonding relatively low mp/bp ~ alkanes water insoluble Importance: common group in biological molecules starting material for synthesis of many plastics

Syntheses, alkenes: 1.dehydrohalogenation of alkyl halides 2. dehydration of alcohols 3.dehalogenation of vicinal dihalide 4. (later)

3.dehalogenation of vicinal dihalides | | | | — C — C — + Zn  — C = C — + ZnX 2 | | X X eg. CH 3 CH 2 CHCH 2 + Zn  CH 3 CH 2 CH=CH 2 + ZnBr 2 Br Br Not generally useful as vicinal dihalides are usually made from alkenes. May be used to “protect” a carbon-carbon double bond.

1.dehydrohalogenation of alkyl halides | | | | — C — C — + KOH(alc.)  — C = C — + KX + H 2 O | | H X a)RX: 3 o > 2 o > 1 o b)no rearragement c)may yield mixtures  d)Saytzeff orientation e)element effect f)isotope effect g)rate = k [RX] [KOH] h)Mechanism = E2

rate = k [RX] [KOH] => both RX & KOH in RDS R-I > R-Br > R-Cl “element effect” => C—X broken in RDS R-H > R-D “isotope effect” => C—H broken in RDS  Concerted reaction: both the C—X and C—H bonds are broken in the rate determining step.

Mechanism = elimination, bimolecular E2 One step! “Concerted” reaction.

CH 3 CHCH 3 + KOH(alc)  CH 3 CH=CH 2 Br isopropyl bromidepropylene CH 3 CH 2 CH 2 CH 2 -Br + KOH(alc)  CH 3 CH 2 CH=CH 2 n-butyl bromide 1-butene CH 3 CH 2 CHCH 3 + KOH(alc)  CH 3 CH 2 CH=CH 2 Br 1-butene 19% sec-butyl bromide + CH 3 CH=CHCH 3 2-butene 81%

Problem 8.6. What akyl halide (if any) would yield each of the following pure alkenes upon dehydrohalogenation by strong base? CH 3 CH 3 isobutylene  KOH(alc) + CH 3 CCH 3 or CH 3 CHCH 2 -X X 1-pentene  KOH(alc) + CH 3 CH 2 CH 2 CH 2 CH 2 -X note: CH 3 CH 2 CH 2 CHCH 3 would yield a mixture!  X 2-pentene  KOH(alc) + CH 3 CH 2 CHCH 2 CH 3 X 2-methyl-2-butene  KOH(alc) + NONE!

Saytzeff orientation: Ease of formation of alkenes: R 2 C=CR 2 > R 2 C=CHR > R 2 C=CH 2, RCH=CHR > RCH=CH 2 > CH 2 =CH 2 Stability of alkenes: R 2 C=CR 2 > R 2 C=CHR > R 2 C=CH 2, RCH=CHR > RCH=CH 2 > CH 2 =CH 2 CH 3 CH 2 CHCH 3 + KOH(alc)  CH 3 CH 2 CH=CH 2 RCH=CH 2 Br 1-butene 19% sec-butyl bromide+ CH 3 CH=CHCH 3 RCH=CHR 2-butene 81%

KOH (alc) CH 3 CH 2 CH 2 CHBrCH 3  CH 3 CH 2 CH=CHCH 3 + CH 3 CH 2 CH 2 CH=CH 2 71% 29% CH 3 CH 3 CH 3 CH 3 CH 2 CCH 3 + KOH(alc)  CH 3 CH=CCH 3 + CH 3 CH 2 C=CH 2 Br 71% 29% CH 3 CH 3 CH 3 CH 3 CHCHCH 3 + KOH(alc)  CH 2 =CHCHCH 3 + CH 3 CH=CCH 3 Br major product

Order of reactivity in E2: 3 o > 2 o > 1 o CH 3 CH 2 -X  CH 2 =CH 2 3 adj. H’s CH 3 CHCH 3  CH 3 CH=CH 2 6 adj. H’s & more stable Xalkene CH 3 CH 3 CH 3 CCH 3  CH=CCH 3 9 adj. H’s & most stable Xalkene

Elimination unimolecular E1

Elimination, unimolecular E1 a) RX: 3 o > 2 o > 1 o b) rearragement possible  c) may yield mixtures  d) Saytzeff orientation e) element effect f) no isotope effect g) rate = k [RW]

E1 : Rate = k [RW] => only RW involved in RDS R-I > R-Br > R-Cl “element effect” => C—X is broken in RDS R-H  R-D no “isotope effect” => C—H is not broken in the RDS

Elimination, unimolecular E1 a)RX: 3 o > 2 o > 1 o carbocation b)rearragement possible “ c) may yield mixtures d) Saytzeff orientation e) element effectC—W broken in RDS f) no isotope effect C—H not broken in RDS g) rate = k [RW] only R-W in RDS

alkyl halide + base  substitution or elimination?

R-X + base  ???????? 1) If strong, conc. base: CH 3 > 1 o => S N 2  R-Z 3 o > 2 o => E2  alkene(s) 2)If weak, dilute base: 3 o > 2 o > 1 o => S N 1 and E1  R-Z + alkene(s)  3)If KOH(alc.) 3 o > 2 o > 1 o => E2  alkene(s)

S N 2 CH 3 CH 2 CH 2 -Br + NaOCH 3  CH 3 CH 2 CH 2 -O-CH 3 1 o CH 3 E2CH 3 CH 3 CCH 3 + NaOCH 3  CH 3 C=CH 2 + HOCH 3 Br 3 o E2 CH 3 CH 2 CH 2 -Br + KOH(alc)  CH 3 CH=CH 2

CH 3 CH 3 CH 3 CHCHCH 3 + dilute OH -  CH 3 CCH 2 CH 3 S N 1 Br OH  CH 3 + CH 3 C=CHCH 2 E1 CH 3 CH 3 CHCHCH 3 CH 3  + CH 2 =CCH 2 CH 3 E1  [1,2-H]  CH 3 CH 3 CCH 2 CH 3 

2.dehydration of alcohols: | | | | — C — C — acid, heat  — C = C — + H 2 O | | H OH a)ROH: 3 o > 2 o > 1 o b)acid is a catalyst c)rearrangements are possible  d)mixtures are possible  e)Saytzeff f)mechanism is E1 note: reaction #3 for alcohols!

CH 3 CH 2 -OH + 95% H 2 SO 4, 170 o C  CH 2 =CH 2 CH 3 CH 3 CH 3 CCH % H 2 SO 4, o C  CH 3 C=CH 2 OH CH 3 CH 2 CHCH % H 2 SO 4, 100 o C  CH 3 CH=CHCH 3 OH + CH 3 CH 2 CH=CH 2 CH 3 CH 2 CH 2 CH 2 -OH + H +, 140 o C  CH 3 CH 2 CH=CH 2 rearrangement!  + CH 3 CH=CHCH 3

Synthesis of 1-butene from 1-butanol: CH 3 CH 2 CH 2 CH 2 -OH + HBr  CH 3 CH 2 CH 2 CH 2 -Br S N 2 E2  KOH(alc) CH 3 CH 2 CH=CH 2 only! To avoid the rearrangement in the dehydration of the alcohol the alcohol is first converted into an alkyl halide.

Syntheses, alkenes: 1.dehydrohalogenation of alkyl halides E2 2. dehydration of alcohols E1 3.dehalogenation of vicinal dihalide 4. (later)

R-OH R-X Alkene vicinal dihalide H + Zn KOH (alc.)

Alkyl halides: nomenclature syntheses: 1. from alcohols a) HX b) PX 3 2. halogenation of certain alkanes halide exchange for iodide reactions: 1. nucleophilic substitution 2. dehydrohalgenation 3. formation of Grignard reagent 4. reduction

Alcohols: nomenclature syntheses later reactions 1. HX 2. PX 3 3. dehydration 4. as acids 5. ester formation 6. oxidation