NGAO Companion Sensitivity Performance Budget (WBS 3.1.1.10) Rich Dekany, Ralf Flicker, Mike Liu, Chris Neyman, Bruce Macintosh NGAO meeting #6, 4/25/2007.

Slides:



Advertisements
Similar presentations
NGAO Systems Engineering Status Team Meeting #3 (Video) R. Dekany 13 December 2006.
Advertisements

Science Group: Status, Plans, and Issues Claire Max Liz McGrath August 19, 2008.
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
An Introduction to Adaptive Optics Presented by Julian C. Christou Gemini Observatory.
Trade Study Report: Fixed vs. Variable LGS Asterism V. Velur Caltech Optical Observatories Pasadena, CA V. Velur Caltech Optical Observatories Pasadena,
Planets around Low-Mass Stars and Brown Dwarfs Michael Liu Bruce Macintosh NGAO Workshop, Sept 2006.
Keck NGAO Science Requirements Claire Max UC Santa Cruz Caltech NGAO Meeting November 14, 2006.
Science Team Management Claire Max Sept 14, 2006 NGAO Team Meeting.
Caltech Optical Observatories1 NGAO Point and Shoot Trade Study Status Richard Dekany, Caltech Chris Neyman, Ralf Flicker, W.M. Keck Observatory.
Low order wavefront sensor trade study Richard Clare NGAO meeting #4 January
1 Laser Guide Star Wavefront Sensor Mini-Review 6/15/2015Richard Dekany 12/07/2009.
NGAO Trade Study : LOWFS type and architecture Stephan Kellner, Ralf Flicker NGAO Team meeting #4, WMKO Kamuela HI, 1/22/2007 Status report.
A Short Introduction to Adaptive Optics Presentation for NGAO Controls Team Erik Johansson August 28, 2008.
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
NGAO Astrometric Science and Performance Astrometric Performance Budget Team: Brian Cameron, Jessica Lu, Matthew Britton, Andrea Ghez, Rich Dekany, Claire.
NGAO System Design Phase Update Peter Wizinowich, Rich Dekany, Don Gavel, Claire Max for NGAO Team SSC Meeting April 3, 2007.
California Association for Research in Astronomy W. M. Keck Observatory KPAO Keck Precision Adaptive Optics Keck Precision AO (KPAO) SSC Presentation January.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
Recent & planned high-contrast work on the WCS and P3K Gene Serabyn Nov. 12, 2007.
NGAO Science Instruments Build to Cost Status February 5, 2009 Sean Adkins.
NGAO NGS WFS design review Caltech Optical Observatories 31 st March 2010.
Galactic Science: Star and Planet Formation
LGS-AO Performance Characterization Plan AOWG meeting Dec. 5, 2003 A. Bouchez, D. Le Mignant, M. van Dam for the Keck AO team.
NGAO System Design Phase Management Report - Replan NGAO Meeting #6 Peter Wizinowich April 25, 2007.
NGAO Status R. Dekany January 31, Next Generation AO at Keck Nearing completion of 18 months System Design phase –Science requirements and initial.
The Future of AO at Keck Sept 2004 Mike Brown, for the AOWG and Keck AO team.
1 Keck NGAO Project Replan: Science Cases and Requirements Claire Max NGAO Team Meeting 6 April 25, 2007.
NGAO Build to Cost Summary Peter Wizinowich, Sean Adkins, Rich Dekany, Don Gavel, Claire Max & the NGAO Team SSC Meeting April 14, 2009.
NGAO High-Contrast Performance Budget (WBS aka Companion Sensitivity) Initial WFE budget and status report NGAO Team meeting #4, WMKO Kamuela.
WMKO Next Generation Adaptive Optics: Build to Cost Concept Review Peter Wizinowich et al. December 2, 2008 DRAFT.
W. M. Keck Observatory’s Next Generation Adaptive Optics (NGAO) Facility Peter Wizinowich, Sean Adkins, Rich Dekany, Don Gavel, Claire Max for NGAO Team:
Trade Study Report: NGAO versus Keck AO Upgrade NGAO Meeting #5 Peter Wizinowich March 7, 2007.
Telescope Errors for NGAO Christopher Neyman & Ralf Flicker W. M. Keck Observatory Keck NGAO Team Meeting #4 January 22, 2007 Hualalai Conference Room,
What Requirements Drive NGAO Cost? Richard Dekany NGAO Team Meeting September 11-12, 2008.
NGAO Wavefront Error Performance Budgets R. Dekany 13 May 2010.
MCAO A Pot Pourri: AO vs HST, the Gemini MCAO and AO for ELTs Francois Rigaut, Gemini GSMT SWG, IfA, 12/04/2002.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
The two faces of the METIS Adaptive Optics system Remko Stuik, Stefan Hippler, Andrea Stolte, Bernhard Brandl, Lars Venema, Miska Le Louarn, Matt Kenworthy,
Closed Loop Performance Laird Close and MagAO team SAC review.
GLAO simulations at ESO European Southern Observatory
Clio: 3-5  m planet-finding AO camera Ari Heinze (Steward Observatory) Collaborators: P. Hinz (Steward), S. Sivanandam (Steward), M. Freed (Optical Sciences),
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
From NAOS to the future SPHERE Extreme AO system T. Fusco 1, G. Rousset 1,2, J.-L. Beuzit 3, D. Mouillet 3, A.-M. Lagrange 3, P. Puget 2 and many others.
1 Characterization of the T/T conditions at Gemini Using AO data Jean-Pierre Véran Lisa Poyneer AO4ELT Conference - Paris June , 2009.
Direct Detection of Planets Mark Clampin GSFC. Mark Clampin/GSFC Introduction Definition –Direct detection of extrasolar planets (ESPs) by imaging –Nobody.
MCAO System Modeling Brent Ellerbroek. MCAO May 24-25, 2001MCAO Preliminary Design Review2 Presentation Outline Modeling objectives and approach Updated.
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
1 High-order coronagraphic phase diversity: demonstration of COFFEE on SPHERE. B.Paul 1,2, J-F Sauvage 1, L. Mugnier 1, K. Dohlen 2, D. Mouillet 3, T.
Improved Tilt Sensing in an LGS-based Tomographic AO System Based on Instantaneous PSF Estimation Jean-Pierre Véran AO4ELT3, May 2013.
1 MCAO at CfAO meeting M. Le Louarn CfAO - UC Santa Cruz Nov
California Association for Research in Astronomy W. M. Keck Observatory KPAO Keck Precision Adaptive Optics 1 Keck Precision AO (KPAO) Notes for AOWG telecom.
Gemini AO Program SPIE Opto-Southwest September 17, 2001 Ellerbroek/Rigaut [SW01-114] AO … for ELT’s 1 Adaptive Optics Requirements, Concepts, and Performance.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Atmospheric Turbulence: r 0,  0,  0 François Wildi Observatoire de Genève Credit for most slides : Claire Max (UC Santa Cruz) Adaptive Optics in the.
On the Evaluation of Optical Performace of Observing Instruments Y. Suematsu (National Astronomical Observatory of Japan) ABSTRACT: It is useful to represent.
The Self-Coherent Camera: a focal plane wavefront sensor for EPICS
AO4ELT, Paris A Split LGS/NGS Atmospheric Tomography for MCAO and MOAO on ELTs Luc Gilles and Brent Ellerbroek Thirty Meter Telescope Observatory.
Keck Precision Adaptive Optics Authors: Christopher Neyman 1, Richard Dekany 2, Mitchell Troy 3 and Peter Wizinowich 1. 1 W.M. Keck Observatory, 2 California.
Parameters characterizing the Atmospheric Turbulence: r0, 0, 0
Gemini AO Program March 31, 2000Ellerbroek/Rigaut [ ]1 Scaling Multi-Conjugate Adaptive Optics Performance Estimates to Extremely Large Telescopes.
Page 1 Lecture 16 Extreme Adaptive Optics: Exoplanets and Protoplanetary Disks Claire Max AY 289 March 7, 2016 Based in part on slides from Bruce Macintosh.
Page 1 Adaptive Optics in the VLT and ELT era François Wildi Observatoire de Genève Credit for most slides : Claire Max (UC Santa Cruz) Basics of AO.
Lecture 14 AO System Optimization
Trade Study Report: Fixed vs. Variable LGS Asterism
Observing Very Young Stars with GPI
Modern Observational/Instrumentation Techniques Astronomy 500
NGAO Trade Study GLAO for non-NGAO instruments
Presentation transcript:

NGAO Companion Sensitivity Performance Budget (WBS ) Rich Dekany, Ralf Flicker, Mike Liu, Chris Neyman, Bruce Macintosh NGAO meeting #6, 4/25/2007

2 Contrast budget - summary Contrast performance budget still incomplete Combining 2 analysis tools Need more science input to complete

3 Goal and Science requirements Goal of Contrast WFE budget (WBS ): –Development of a companion sensitivity performance budget, based on a strawman coronagraph approach meeting the science requirements. Develop a contrast-driven spatio-temporal wavefront error budget that includes not just AO performance but realistic values for static/internal effects, so that we can see what instrument design choices (e.g. optics quality) are important now From the System Requirements Document (KAON 456): a)≥ 4 magnitudes at 0.055” at  m for Galactic Center b)≥ 10 mags at 0.5” (  m) for 30% sky cov. & ≤ 20” object diam. These are insufficient specifications for contrast performance budget evaluation: more detailed observing scenario required to calculate actual contrast for specific cases.

4 High-C science case recap Principal NGAO high-contrast science cases: –Direct imaging and spectroscopy of Planets around low-mass stars and brown dwarfs Resolved debris disks and protostellar envelopes NGAO high-contrast selling points: –LGS tomography is the primary AO mode of interest Large sky coverage Fainter stars = many more targets + relaxed contrast requirements Multi-band studies: optical & near-IR ~5 M Jup ? ~25 M Jup (images from M. Liu ppt NGAO m1)

5 Analysis tools Contrast budget spread sheet (analytical model) –Provided by B. Macintosh (derivative of GPI tool) –Fast to evaluate –Parameterizes speckle noise effects –Observing scenario implicit –We do not have good analytical models for some terms Dynamic/static telescope aberrations (Keck pupil diffraction not included) LGS effects Tomography error (approximate power law for now) –Does not produce PSFs Numerical AO simulations –YAO Monte Carlo AO simulation package (F. Rigaut) –Computationally expensive (more than ~30 s real time unreasonable) –Obtain AO PSFs at multiple wavelengths with & w/o coronagraph simultaneously –Contrast for a given observation scenario must be evaluated separately

6 Contrast tool (1) - Wavefront budget

7 Contrast tool (2) - PSD modeling

8 Contrast tool (3) - Observing scenario “Contrast” depends on: –Smoothness of host star halo –Host star magnitude –Companion magnitude and position (angular distance from host) –Exposure time (speckle noise, dark current) Complete observing scenario required in order to calculate contrast

9 Contrast tool (4) - Contrast budget Sample contrast budget –142 nm RMS WFE –  = 0.3” –m(J) = 16 –r 0 = 0.18 cm –N = 48x48 sub-ap.

10 Using the contrast tool [R,I,J,H,K,L] band (color/psym) 142 nm (“Exo-Jupiter”) NGAO WFE budget (solid lines) 158 nm (30° zenith angle) (dot-dashed lines)

11 Numerical simulation tool 5-LGS 90 km) quincunx asterism –Optimized for on-axis Strehl 36x36 sub-apertures across pupil 2-DM MCAO system 10 km Bright NGS case –Used 4 tip/tilt NGS for null-mode correction; could have used only 1 NGS (2x2) measuring Z2-Z6 Frame rate 1 kHz 250 Hz CN-M3 turbulence model –r 0 = 18 cm

12 Lyot coronagraph model Slide borrowed from the Lyot Project

13 Apodized Lyot coronagaph 0.7  m 1.0  m 1.25  m 1.65  m 2.2  m 0.92”1.32”1.65”2.18”2.90” 0.14% light though 10 /D occ. spot 1.5% light through 6 /D occ. spot No occulting spot Implemented in YAO numerical AO simulation 160 nm (36x36 quincunx MCAO shown below)

14 Radial average PSFs No static/dynamic telescope aberrations 160 nm RMS residual wavefront error No coronagraph (left) ; 6 /D occulting spot (right)

15 Radial average PSFs No static/dynamic telescope aberrations 160 nm RMS residual wavefront error No coronagraph (left) ; 10 /D occulting spot (right)

16 Radial average PSFs 180 nm input (segment figure + windshake) 170 nm RMS residual wavefront error No coronagraph (left) ; 10 /D occulting spot (right)

17 Conclusions / recommendations 1.Spread sheet contrast tool: –Needs to be validated/anchored against numerical simulation 2.Numerical simulations: –Will returns contrast estimates given observing scenarios Host magnitude Companion position & magnitude Exposure time –Would like to include optical quality requirements (maybe not feasible within current study) 3.Observing scenarios: –Need to be better defined