Anterior-posterior patterning in Drosophila
The fly body plan: Each segment has a unique identity 3 head The fly body plan: Each segment has a unique identity and produces distinct structures 3 thorax 8 abdomen
Figures\Chapter09\DevBio7e09053.jpg
Mutations affecting the antero-posterior axis 3 independent maternal systems: anterior, posterior, terminal fate map larva triple mutants active systems active systems wild-type A P T - - - single mutants double mutants - P T - P - anterior bicoid A - T - - T posterior oskar A P - A - - terminal torso additive phenotypes
Maternal effect mutations Figures\Chapter09\DevBio7e09t010.jpg
Zygotic effect mutations Figures\Chapter09\DevBio7e09t020.jpg
bicoid mutant phenotype Embryo from wild-type mother Embryo from bicoid mother Figures\Chapter09\DevBio7e09130.jpg Wild-type Bicoid promotes anterior fates and inhibits posterior fates.
Anterior: bicoid is required for head and thorax Wild type bicoid mutant blastoderm fate map head + thorax abdomen abdomen
Bicoid mRNA localization in embryo (tethered to microtubules) Figures\Chapter09\DevBio7e09141.jpg
Nuclei divide without cell division in Drosophila to produce a syncytial blastoderm embryo Figures\Chapter09\DevBio7e09010.jpg Fig. 9.1
Bicoid protein gradient in syncytial blastoderm embryo - diffuses after translation from localized mRNA - protein unstable Figures\Chapter09\DevBio7e09142.jpg
Transplantation of egg cytoplasm An organizer of the anterior-posterior pattern is located at the anterior pole wt rescue of pattern wt head in the center polarity reversal wt thorax at posterior pole polarity reversal abdomen only polarity normal
bicoid mRNA induces head and thorax bicoid (bcd) gene encodes a homeo-domain transcription factor
Injection of bicoid mRNA: anterior (head) structures at site of injection & reorganization of polarity no head
Figures\Chapter09\DevBio7e09152.jpg
Bicoid protein: transcriptional and translational regulator zygotic target genes maternal target mRNA (promotes anterior fates) (inhibits posterior fates)
Transplantation of egg cytoplasm Posterior cytoplasm also has polarizing activity wt rescue of pattern wt head in the center polarity reversal wt thorax at posterior pole polarity reversal wt double abdomen polarity reversal abdomen only polarity normal
Mutations affecting the antero-posterior axis 3 independent maternal systems: anterior, posterior, terminal fate map larva triple mutants active systems active systems wild-type A P T - - - single mutants double mutants - P T - P - anterior bicoid A - T - - T posterior oskar A P - A - - terminal torso additive phenotypes
Nanos is the maternal effector of the posterior system mutant rescued rescued rescue of all posterior-system mutants by injection of nanos mRNA
Embryonic polarity genes Figures\Chapter09\DevBio7e09101.jpg
Figures\Chapter09\DevBio7e09102.jpg
Anterior-Posterior pattern formation in flies Figures\Chapter09\DevBio7e09081.jpg
The Bcd gradient is converted into domains of gene expression Bcd protein binds differentially to enhancers of target genes Different thresholds of Bcd concentration are required to turn on different genes low affinity high affinity target genes are zygotically expressed Gap genes
Bcd gradient and expression domains of target genes bcd mRNA Bcd protein target genes
Expression patterns of proteins encoded by Gap genes Bicoid and Nanos regulate Gap gene expression Figures\Chapter09\DevBio7e09221.jpg Expression patterns of proteins encoded by Gap genes
Gap gene mutants lack different body regions
Gap gene mutants lack different body regions Wild type Krüppel hunchback knirps
The gap genes regulate each other and form domains with distinct combinations of gene expression. Hunchback Krüppel
Figures\Chapter09\DevBio7e09222.jpg
Anterior-Posterior pattern formation in flies Figures\Chapter09\DevBio7e09081.jpg
Figures\Chapter09\DevBio7e09201.jpg
Wild type fushi tarazu mutant Pair-rule mutants Wild type fushi tarazu mutant Figures\Chapter09\DevBio7e09211.jpg
Even-skipped expression pattern
Modularity of the Drosophila even-skipped promoter 08_18_reporter.gene.jpg 08_18_reporter.gene.jpg
Regulation of expression stripe no. 2 of Even-skipped (eve) hunchback giant eve stripe #2 Krüppel repressor activator parasegment 1 2 3 4 5 multiple binding sites in enhancer of eve repressors activators
Regulation of the Second Stripe of Transcription from the even-skipped Gene Figures\Chapter09\DevBio7e09242.jpg
Regulation of the even-skipped gene Figures\Chapter09\DevBio7e09230.jpg
Fushi tarazu expression Refinement of expression domains over time early Fushi tarazu expression Figures\Chapter09\DevBio7e09250.jpg late Eve, Ftz expression
Refined expression domains in distinct cell rows
Anterior-Posterior pattern formation in flies Figures\Chapter09\DevBio7e09081.jpg
Segment polarity mutants Figures\Chapter09\DevBio7e09202.jpg
Segment polarity mutants
Wingless signaling specifies cell fates in the ventral epidermis Anterior cells make Hair Posterior cells make Naked cuticle Wild type arm mutant
Segment polarity genes – 14 stripes 13 12 A 11 ap 10 L fg 9 hg 8 1 7 2 3 6 4 5 Expression of segment polarity gene wingless
Segments and Parasegments Figures\Chapter09\DevBio7e09190.jpg
The Even-skipped and Fushi tarazu pair-rule transcription factors activate the segment-polarity gene Engrailed
Intercellular feedback maintains pair-rule gene expression states Figures\Chapter09\DevBio7e09262.jpg
Intercellular feedback maintains pair-rule gene expression states =Wnt Figures\Chapter09\DevBio7e09263.jpg
Wnt signaling pathway - + - + - + + - - + - +
Gradients of Wingless and Hedgehog pattern each segment
Anterior-Posterior pattern formation in flies Figures\Chapter09\DevBio7e09081.jpg